Шрифт:
Нужно подчеркнуть специально: электрические напряжения и токи, возникающие на поверхности головы при действии разнообразных сигналов, не являются результатом подключения электродов и электронной аппаратуры, они не создаются этими приборами, а существуют сами по себе. Электроды и усилитель электрических сигналов нужны только для того, чтобы уловить эти сигналы и сделать их доступными для наблюдения.
Но ведь звуковые, зрительные и другие сигналы воздействуют на органы чувств животных и человека постоянно. Значит, мозг любого существа, в том числе и наш, непрерывно вырабатывает электрические сигналы? Да, именно так. Все время и при любых обстоятельствах — работаем мы или отдыхаем, двигаемся или спим — на поверхности нашей головы переливается невидимая картина электрических напряжений — продукт работы нашего мозга. Но мы совсем не замечаем этого и не ощущаем воздействия тока, потому что эти сигналы, даже если они создаются работой миллионов нервных клеток, все равно чрезвычайно слабы. Узнать о существовании этих электрических сигналов можно только с помощью высокочувствительных приборов.
Впрочем, если мы хотим уловить электрические ответы мозга на какие-то сигналы, например звуковые, то иметь высокочувствительную аппаратуру — это еще полдела. Ведь помимо тех нервных клеток, которые реагируют на звуковой сигнал, в это же время работают и генерируют электрические токи миллионы других клеток мозга, которые заняты совсем другими делами. Да еще, помимо клеток мозга, в организме есть множество других источников электрических токов, в том числе и более мощных, чем нервные клетки, например мышцы; при любом движении они тоже работают как электрические генераторы. Все это создает такую какофонию разнообразных электрических шумов, что интересующий нас ответ на звуковой сигнал совершенно в ней потеряется. И с этим ничего не сможет поделать даже самый высокочувствительный усилитель: ведь он «не знает», каков источник того или иного электрического потенциала, и поэтому одинаково добросовестно усиливает и ответ мозга на звуковой сигнал, и маскирующие его помехи.
Так что, помимо высокочувствительных электронных усилителей, для выявления этих ответов приходится использовать и специальную компьютерную технику, которая позволяет сделать, казалось бы, невозможное: электрические ответы мозга, полностью «утонувшие» в массе посторонних шумов, она очищает и выделяет настолько, что эти ответы можно не только обнаружить, но и точно измерить. Основная идея, которая при этом используется, довольно проста. Чтобы выявить ответ мозга на какой-то сигнал, нужно повторить этот сигнал сколько-то раз — иногда достаточно повторить его раз десять, а порой приходится сделать сто или тысячу повторений. При этом компьютер должен точно «знать», в какие именно моменты времени подаются звуковые сигналы. Компьютер анализирует электрические токи мозга и сравнивает их с моментами подачи звуковых сигналов. Если какие-то колебания электрического напряжения регулярно появляются каждый раз через определенный интервал времени после очередного звукового сигнала, значит, этот всплеск напряжения не случаен, это — ответ мозга на звук. А те колебания напряжения, которые возникают нерегулярно и вне связи со звуковыми сигналами, очевидно, никакого отношения к реакции мозга на звук не имеют, они должны быть отсеяны. Так, фрагмент за фрагментом анализируя электрические потенциалы после повторяющихся звуковых сигналов, компьютер реконструирует истинную форму электрического ответа мозга на звук. Результат может быть весьма впечатляющим. Из совершенно хаотических и беспорядочных колебаний электрического напряжения, в которых совершенно невозможно рассмотреть хоть что-нибудь осмысленное, хоть какую-нибудь связь со звуковым сигналом, компьютер выделяет четкий электрический ответ, в котором несколько всплесков электрического напряжения отражают ответы нескольких отделов мозга на звук.
Иногда, правда, и этого оказывается недостаточно — когда ответы мозга на звук очень уж слабы, малы по величине возникающих электрических сигналов, например тогда, когда нужно уловить ответы на очень слабые звуковые сигналы. В этих случаях даже описанная процедура выделения ответа из шума может не дать ясной картины: то ли есть едва заметный ответ, то ли нет. Тогда приходится задавать компьютеру дополнительную, более сложную задачу: в получившейся не очень вразумительной картине электрических потенциалов, содержащей ответ мозга и посторонние шумы, отыскать по специальной программе те небольшие колебания, форма которых характерна именно для ответов мозга. Таким способом можно уловить ответы совсем слабенькие.
Однажды я сам даже удивился, насколько чувствительным может быть такой метод. Нужно было зарегистрировать ответы мозга дельфина на очень слабые звуковые сигналы, да притом еще, когда дельфин находился не на поверхности воды, а под водой. А морская вода — хороший проводник электричества, поэтому для электрических токов мозга, достигающих поверхности тела, она создает там нечто вроде короткого замыкания — разницы в электрических потенциалах на разных точках тела почти нет. Когда использовали всю возможную технику для выделения ответов мозга из шумов, то оказалось, что можно уловить ответы примерно в одну стомиллионную долю вольта (миллиардную часть какой-либо единицы измерения обозначают приставкой «нано-»; стало быть, ответы были величиной в 10 нановольт). Мне даже не сразу пришло в голову, с чем же можно сравнить такую величину электрического напряжения. Но поскольку дело происходило на островке посреди Тихого океана, то сравнение все же довольно быстро нашлось. Представьте себе, что на противоположных берегах Тихого океана опустили в воду два электрода: один где-нибудь в Сан-Франциско или в Мексике, другой — во Владивостоке или в Японии. К этим электродам приложим такое же напряжение, которое дает обычная батарейка, — это немного больше одного вольта. И предположим, что это напряжение равномерно распределилось бы по всему расстоянию примерно в 10 тысяч километров (на самом деле напряжение не распределится равномерно, но для иллюстрации можно предположить, что это именно так; литературный жанр допускает такую вольность, ведь и подключать батарейку к противоположным берегам океана никто не собирается). Так вот, если бы напряжение в один вольт равномерно распределилось бы по всей ширине океана, то у нашего дельфина, болтающегося как раз посредине этого океана, перепад напряжения между точками тела, к которым приложены электроды, было бы несколько десятков нановольт.
Так что метод регистрации электрических сигналов мозга — очень чувствительный способ, от него не скроется никакой, даже самый слабенький ответ мозга на звук. Если уж ответ возник, его можно надежно обнаружить.
Такая регистрация электрических ответов мозга и является тем средством, которое позволяет быстро и точно определить, слышит ли дельфин какой-то звук или нет. Есть ответ — значит звук воспринимается, дельфин слышит его. Нет ответа — значит, звук неслышим. Теперь можно, как и в опытах с обученными дельфинами, менять самые разные параметры звуков и определить, при каких условиях звук слышим, а при каких — нет, то есть выяснить, каковы слуховые способности дельфинов.
Конечно, вся эта техника — электронные усилители электрических сигналов, компьютеры и прочее — немножко сложнее, чем опущенная в воду педаль или шарик, которые нужны только для проведения экспериментов на обученных дельфинах (про аппаратуру для создания необходимых звуковых сигналов я не говорю, потому что она также нужна для всех способов исследования слуха). Но результат стоит всех этих хлопот и затрат. Не нужно специально обучать и тренировать дельфина, не нужно проводить длительных экспериментов, в которых дельфин раз за разом должен выполнять одно и то же движение в ответ на звуковой сигнал. Не нужно, чтобы во время эксперимента дельфин всегда был в хорошем рабочем настроении: электрические ответы мозга возникают совершенно независимо от того, хочет этого животное или нет. Неважно, сыт он или голоден, внимательно слушает звуки или не обращает на них внимания и дремлет себе потихоньку: если дельфин услышал звук, если его мозг среагировал на этот звук, то электрический ответ укажет на это совершенно точно. Правда, как уже было сказано, для получения электрического ответа мозга каждый сигнал необходимо многократно повторять, чтобы компьютер смог выделить этот ответ из посторонних шумов. Но это не беда: сигналы можно подавать достаточно часто — раз десять в секунду или даже чаще, так что даже если требуется тысяча повторений, это займет не больше одной двух-минут, и результат готов. Так что этот метод чрезвычайно продуктивен.
Конечно, и у поведенческого метода исследования есть свои преимущества. Дело в том, что некоторые типы звуковых сигналов лучше вызывают электрические ответы мозга, а некоторые хуже. Поэтому определенные особенности слуха дельфина никак не удается измерить с помощью метода электрических ответов: те сигналы, которые нужны, чтобы «прощупать» эти способности, просто не вызывают заметных ответов. Это не потому, что метод электрических ответов недостаточно чувствителен: выше мы убедились уже, что он может ощущаться необычайно точно. Но если задача, которую должен решить мозг дельфина, анализируя звуковые сигналы, достаточно сложна, она «растягивается» во времени, многочисленные нервные клетки мозга срабатывают не одновременно, а каждая в свою очередь. И именно одновременная работа большого количества нервных клеток может создать заметный электрический ток. Ничего не поделаешь, идеальных методов исследования, которые давали бы ответ на любой вопрос, нет в природе, как не бывает лекарства от всех болезней. По поведению же дельфина, проявив достаточное терпение, всегда можно определить, что звуковой сигнал услышан, проанализирован и опознан. Так что лучше всего, конечно, не отказываться ни от одного из методов, а по возможности гармонично сочетать использование того и другого, тогда уж не прогадаем.