Шрифт:
ОТКРЫТИЕ ЗВЕЗД
В период становления научной астрономии звездам не очень повезло. С 15 и до середины 19 столетия главное внимание уделялось планетам Солнечной системы. В мире звезд велась в основном предварительная регистрационная работа.
Росла мощность телескопов, и вместе с этим лавинообразно нарастало количество вновь открываемых звезд. Это и неудивительно - невооруженным глазом можно видеть звезды до 6-й величины включительно, а их на всем небе около 4800. Зато в интервале до 10-звездной величины их уже 350 тысяч, а до 20-й величины - миллиард. Так что астрономия столкнулась со своеобразным информационным взрывом.
Однако коллекция в миллион бабочек еще не творит биологии.
Звезд было много, но об их природе к середине 19-го века высказывались лишь очень смутные догадки. Астрономы не слишком ясно представляли себе даже расстояния, на которых расположены эти звезды... Разумеется, после работы Галлея никто не считал, что они принадлежат какой-то неподвижной хрустальной сфере, но и сколь-нибудь ясной картины, напоминающей великолепное полотно Солнечной системы образца Ньютона - Лапласа, не существовало.
Все сдвинулось с места, когда исследователи научились уверенно выделять какие-то особые типы звезд, и по этим особенностям, как по ступенькам, карабкаться к пониманию основных звездных характеристик расстояний, размеров, масс, светимостей, цвета, возраста, строения.
Исходный прорыв наметился как раз в связи с древней проблемой расстояний. Если в античные времена (и вплоть до Коперника) считалось более или менее очевидным, что звезды всех 6 величин находятся на одинаковом расстоянии от Земли, то последовавший разгром хрустальной сферы привел к противоположному крену - долгое время общественное мнение склонялось к тому, что истинная яркость звезд того же порядка, что и у Солнца, а наблюдаемая яркость целиком зависит от их удаленности. Эта вполне научная гипотеза приводила, в конечном счете, ко многим ошибочным выводам - ведь светимость большинства ярких звезд на самом деле значительно превышает светимость Солнца. Поэтому лишь решение проблемы расстояний открывало дорогу к физической классификации звезд.
Необходимы были прямые и очень точные измерения звездных параллаксов. Они стали активно проводиться уже на рубеже 18-19 веков, но долгое время из-за больших ошибок параллаксы сильно завышались, и расстояния до звезд оказывались неправдоподобно малыми.
Достаточно точные результаты появились почти одновременно и совершенно независимо при изучении трех ярких звезд.
Первый результат, по-видимому, получил директор Дерптской обсерватории Василий Яковлевич Струве* (1793-1864), определивший параллакс Веги (? Лиры) в 1837 году. Это была прецизионная работа - параллакс оказался немногим больше десятой доли угловой секунды (современное значение 0,123").
*В. Я. Струве, впоследствии организатор и с 1840 г. директор Пулковской обсерватории, академик Петербургской АН, стал родоначальником блестящей "звездной династии". Его сын Отто Васильевич (1819 -1905), сменивший отца на посту в Пулково в 1862 г., и внук Людвиг Оттович (1858 -1920), директор Харьковской обсерватории, внесли огромный вклад в изучение двойных звезд и во многие другие области астрономии. Правнук Отто Людвигович (1897 -1963) стал одним из создателей современной радиоастрономии. Он возглавлял знаменитую американскую обсерваторию Грин-Бэнк, был президентом Международного астрономического союза. Именно Отто Струве сформулировал концепцию звездной эволюции.
Заметно большие параллаксы были получены в 1838 году немецким астрономом Фридрихом Вильгельмом Бесселем (1784-1846) для 61 Лебедя и английским астрономом Томасом Гендерсоном (1798-1844), наблюдавшим в Южной Африке ? Центавра*.
* Современные значения параллаксов 61 Лебедя 0,292", а ? Центавра 0,751".
Вега и ? Центавра - четвертая и пятая среди самых ярких звезд, а 61 Лебедя - очень быстрая звезда, чье собственное движение можно зарегистрировать невооруженным глазом (5,22" в год)*. Это и давало предварительные основания числить данные звезды среди ближайших к Солнцу.
*Самая быстрая из известных сейчас звезд - звезда Барнарда, обнаруженная в 1916 году американским астрономом Эдвардом Эмерсоном Барнардом (1857 -1923), известным исследователем планет и слабых звезд. Она обладает собственным движением 10,3" в год, а ее светимость в 70 раз ниже солнечной.
Бессель первым сообщил о своем открытии, но, как и Гендерсон, опубликовал его в 1839 году, а Струве - даже в 1840 г.
Из этих измерений впервые возникла надежная абсолютная шкала межзвездных расстояний. Оказалось, что ближайшая из звезд находится на расстоянии, которое свет преодолевает за 4,28 года (это так называемая Проксима Центавра с параллаксом 0,762", относящаяся к тройной системе Центавра).
Зная расстояния, можно было вводить абсолютные звездные величины, определяемые как блеск звезды, отнесенной от наблюдателя ровно на 10 парсеков:
М = m + 5 - 5 lg R, где расстояние R дано в парсеках.
Из сопоставления разных звезд вытекало, что Солнце ничем особым не выделяется даже среди ближайших соседей. Его светимость в 3 раза больше, чем у ? Центавра, но, например, светимость Сириуса в 22 раза превосходит солнечную.
К сожалению, метод тригонометрических параллаксов работает до расстояний порядка 30 парсеков, поскольку надежные измерения параллакса отдельной звезды можно вести с точностью, не превышающей 0,03". Далее необходимо учитывать параллаксы, относящиеся к звездным скоплениям, - это дает достаточно надежные результаты для расстояний в 10-20 раз больших.