Шрифт:
Как-то в 1945 году на одном из научно-технических заседаний, когда советский ученый И. Кикоин рассказывал о методах разделения, И. Курчатов в шутку заметил, что этот процесс схож, если можно так выразиться, с ситуацией при выходе из кинотеатра после окончания сеанса: подростки проскакивают быстрее степенных и солидных зрителей.
Возвращаясь к проблеме разделения изотопов, скажем, что если пропускать через пористую перегородку газовую смесь, то молекулы легкого газа пройдут быстрее и за перегородкой содержание его окажется больше, чем до перегородки.
Уран-238 и уран-235, как известно, металлы.
Для разделения их прежде всего переводят в газообразное состояние, соединяют с фтором и получают гексафторид урана. Этот газ и пропускают через пористую перегородку с микроскопическими отверстиями порядка 10^-8 сантиметра. Однако после одного прогона через перегородку содержание легкого изотопа урана-235 увеличивается всего в 1,002 раза. Чтобы увеличить концентрацию, этот процесс повторяют снова и снова. Например, чтобы поднять содержание урана-235 с 0,7 процента до 99, нужно пропустить газ примерно через 4 тысячи таких перегородок.
При разделении больших количеств изотопов применяют перегородки гигантской площади. Больше того, для разделения газовых смесей нужно строить специальные заводы, на которых площадь только одних пористых перегородок должна составлять сотни гектаров.
Система же труб, соединяющих отдельные камеры, протягивается на несколько тысяч километров. Ценой очень больших усилий удается отделить вредный, поглощающий нейтроны изотоп уран-238 от урана-235.
Поэтому так высока его стоимость.
Процессы разделения, которые часто называют обогащением урана, настолько важны для атомной энергетики, что научно-исследовательские и поисковые работы продолжаются и по сей день. Предложен ряд новых методов разделения, в том числе способ, основанный на использовании лазерного излучения, интенсивно изучаемый в настоящее время.
Используя уран, обогащенный изотопом урана-235, и применяя однородную смесь урана, например, с графитом, уже можно создать действующий реактор.
При достижении некоторого объема в нем начнется цепная реакция деления - реактор заработает и... через очень короткое время остановится. Почему? Дело в том, что при производстве энергии часть ядер урана-235 разделится выгорит. Количество его, находящееся в активной зоне реактора, станет меньше критической массы, и цепная реакция затухнет.
Из такого положения есть два выхода. Первый состоит в том, чтобы непрерывно загружать реактор новым ураном-235, заменяя им выгоревший. Можно, кроме того, заранее загружать активную зону дополнительным количеством горючего, предназначенного для выгорания.
Использовать первый способ в чистом виде практически невозможно: стоит выгореть всего нескольким атомам урана-235, как цепная реакция начнет затухать.
Поэтому применяют комбинацию того и другого. В реактор загружают не весь уран, необходимый для работы реактора все время, на которое он рассчитан, а только часть его. Затем, по мере выгорания, добавляют новые порции урана.
Поскольку речь зашла о выгорании урана, стоит рассказать еще об одной особенности работы реактора при нагрузке, говорят, "на мощности". Связана эта особенность с осколками ядер, образующимися при делении урана, или, как их иногда называют, - шлаками.
При пуске первого реактора, работающего "на мощности", физики столкнулись с необъяснимым явлением, впоследствии получившим название отравление. Действительно, это явление выглядит так, словно в реактор, который только что был выведен "на мощность", кто-то начинает подсыпать вредный поглотитель, бесполезно захватывающий нейтроны и прекращающий цепную реакцию.
Теперь это явление получило объяснение. Но когда физики столкнулись с ним впервые, оно выглядело непонятным, а ситуация тревожной. Под сомнением оказалась возможность работы реакторов на большой мощности. Ведь могло случиться, что при увеличении мощности отравление станет настолько большим, что ценная реакция прекратится и реактор нельзя будет вернуть в критическое состояние.
Такие мысли тревожили физиков, наблюдавших за поведением реакторов. Но уже через несколько дней после начала работы первого реактора "на мощности"
Э. Ферми удалось отыскать, или, если быть более точным, понять причину этого явления. Непонятное стало очевидным, простым, однако... неприятности, вызываемые отравлением, конечно, не исчезли. Остались они потому, что вызывались все теми же осколками ядер, или шлаками, возникающими при делении.
Шлаки, зола затрудняют процесс горения и в обычной угольной топке. Но там, обеспечивая нормальные условия для горения, их просто удаляют из топки. Другое дело шлаки атомного реактора. Удалить их очень трудно. Ведь они - атомы новых элементов, образовавшиеся при делении, и находятся они среди окружающих их атомов урана. Практически все они так и остаются в реакторе до самого конца его работы, то есть до той поры, пока активная зона не будет заменена новой. Накапливание осколков ведет к потере нейтронов, бесполезно поглощающихся ими.
Влияние некоторых шлаков-осколков на цепную реакцию сказывается сразу же после начала работы, так как они обладают очень большим сечением поглощения. Влияние других, имеющих маленькое сечение поглощения нейтронов, выявляется постепенно, по мере их накопления. Но все равно рано или поздно шлаков накопится столько, что цепная реакция прекратится, несмотря на то, что к этому времени в реакторе останется еще очень много урана-235. Ведь до самого последнего момента реактор был критическим и в нем шла цепная реакция. Теперь, после остановки, все топливо, включая и невыгоревший уран-235, нужно удалять из реактора и загружать его свежим. Выгоревший уран направляется в специальные хранилища.