Шрифт:
А теперь возвратимся к листу открытого учета решенных задач. На уроке физики решена задача. Процесс ее решения продолжается не более 5 минут. В это время учащиеся ничего не пишут. Зато в конце урока им будет выделено 2 минуты для письменного оформления этой задачи в тетрадях. Как видим, выдерживается соотношение 3:1. Значит, каждый ученик уйдет из класса, пропустив эту задачу через свое сознание трижды. Первый раз, когда задачу решали у доски. Второй раз, когда ее решение восстанавливалось в тетради. А третий? Третий раз - во время проверки. Записанное-то в тетрадь решение необходимо проверить. Как?
Метод цепочки
В нем несколько частных вариантов. Вариант А. Его удобнее всего применять на последнем уроке. Первый ученик решил задачу и тотчас же отдал ее на проверку учителю. Время проверки - не более 10 секунд, и тетрадь возвращается ученику. Вот еще одна поднятая рука: задачу записал второй. Проверит правильность записи решения первый. Третьего - второй и т. д. Это цепочка. Первый же ученик после проверки решения задачи вторым уходит домой, хотя урок еще не закончился. На первых уроках с применением метода цепочки на проверку упражнений лучше всего выделить на 2-3 минуты больше расчетного времени: ребята должны привыкнуть к простой мысли об обязательности самостоятельного оформления решения задачи в тетради. Поняв это, ученик не станет отвлекаться во время решения - себе в убыток.
Цепочка работает. Через каждые 8-10 секунд из класса уходит один ученик, и вот уже рассеянным архипелагом в классе остались всего только отдельные ученики. Им оказывается индивидуальная помощь. Крайнее средство к доске вызывается один из них и снова решает эту же задачу, а через 5 минут и он и все оставшиеся уже бегут к учителю с записанным самостоятельно решением задачи. И пусть это далось им не просто, пусть большую часть работы им помог сделать учитель - пусть! Даже самая дальняя дорога всегда начинается с первого шага. Вот они и сделали свой первый шаг.
Некоторые учителя, возможно, попытаются провести аналогию между обстановкой на последних минутах при проверке задач методом цепочки с обстановкой на последних минутах контрольных, когда ребята вот так же, по мере выполнения работ, уходят домой или выходят из класса в коридор еще до звонка. Несхожесть психологических состояний учащихся в этих ситуациях очевидна: в первом случае остающиеся в классе относятся к уходящим с полным безразличием или, хуже того, с завистью, так как уходят-то на каждой контрольной работе одни и те же - лучшие. Кто и когда сможет описать "мильон терзаний" тех, на которых давным-давно махнули рукой и учителя, и родители, и товарищи, да и они сами? Веками, как проклятие, висело над многими и многими поколениями детей чье-то уничтожающее мнение об их так называемой неспособности к восприятию математических дисциплин. Но вот в 1968 г. доктор психологических наук, профессор В. А. Крутецкий заявил: "Абсолютной неспособности к изучению математики, своего рода "математической слепоты" не существует. Каждый нормальный и здоровый в психическом отношении школьник способен при правильном обучении более или менее успешно овладеть школьным курсом математики, приобрести знания и умения в объеме программы средней школы"25.
"При правильном". На наш взгляд, речь сейчас как раз об этом. "Более или менее успешно" - отвергнуто! Отвергнуто десятилетиями экспериментальной работы. Только более. Значительно более! Чтобы продолжить наш нелегкий путь к полному пониманию этого утверждения, оценим психологическое состояние ученика, перед которым только что было развернуто решение упражнения и от которого ничего более не требуется, кроме как восстановить на листе бумаги запись этого решения.
С весельем и отвагой: я могу!
Пусть на первом уроке он еще не до конца постиг существо стоящей перед ним задачи. Пусть даже еще на двух. Но вот однажды один из тех, кто никогда и ни в чем не проявлял своих математических способностей, вдруг (?) в числе первых записал в тетради решение упражнения, и ему дали на проверку тетрадь одного из отличников! Психологическое давление в классе поднимется до красной черты. Кто проверяет?!! Першак!!! Кого??? Назарова!!! В эти минуты нужно просто видеть глаза всех остальных "неспособных".
На следующем уроке при решении задачи под их взглядами трещит доска. "Если Першак смог, то чем же я хуже?" И он действительно не хуже. Не хуже не только Першака, но и не хуже самого Назарова. Он просто задутый случайным порывом ветра огонек неразгоревшегося костра.
Вариант Б. Идет промежуточный урок, а тетради с записанными упражнениями сыпятся, как из рога изобилия. Неизбежна пробка. Но пробки не будет: первый решивший продолжает проверять вновь и вновь поступающие тетради, а после каждой проверенной к нему для проверки подключается новый помощник, и к концу урока в классе не остается ни одного ученика, который бы не закончил запись решения задачи.
– А если все-таки остается?
– так и слышится голос самого недоверчивого оппонента.
Вариант В. В классе создается одновременно 5 цепочек. Каждая - ручейком столов от классной доски до задней стенки классной комнаты. Этот вариант применяется особенно часто, когда ученики достигли такого уровня подготовки, при котором на доске решается не по одной, а по 2-3 и даже по 4-5 разнородных задач. Особенно если эти задачи повышенной сложности. Проверка их должна проводиться со всей тщательностью, с учетом возможных нестандартных вариантов, которые вполне могут использовать при решении отдельные ученики.