Вход/Регистрация
Как же называется эта книга
вернуться

Смаллиан Рэймонд М.

Шрифт:

203.

История о двух посетителях ресторана напомнила мне еще одну историю о даме на званом обеде. Когда подали спаржу, эта дама, взяв себе с серебряного блюда все головки, передала остальное соседу. Сосед спросил: "Что вы делаете? Почему вы взяли себе все головки, а остальное отдали мне?" "Как, разве вы не знаете?
– невозмутимо ответила дама.
– Головки в спарже - самое вкусное".

204.

Однажды в какой-то газете мне попалась на глаза карикатура.

Мальчик и девочка идут по тротуару. Мальчик идет дальше от проезжей части, чем девочка. Мимо них проезжает грузовик и обдает девочку грязью с головы до ног. Мальчик говорит своей спутнице: "Теперь ты понимаешь, почему я не хожу со стороны проезжей части как джентльмен?"

205.

Мне нравится следующее определение этики. Мальчик спрашивает отца: "Папа, что такое этика?" Отец отвечает:

"Сейчас объясню тебе на примере, сынок. Как-то раз в мой магазин зашла одна дама. Оплачивая покупку, она дала мне двадцатидолларовую купюру, думая, что дает мне десять долларов. Я также подумал, что она уплатила десять долларов, и дал ей сдачу как с десяти долларов. Лишь через несколько часов я обнаружил, что дама в действительности уплатила двадцать долларов. Сообщу ли я или не сообщу об этом моему партнеру? Это и есть этика, мой мальчик".

206.

Однажды я вместе с приятелем, математиком по профессии, зашел в небольшой ресторанчик пообедать. После перечня блюд в меню стояло: "За все особо заказанное нужно особо платить". Мой приятель заметил по этому поводу: "Слово `особо', да еще дважды повторенное, здесь явно ни к чему".

207.

На рекламе одного ресторана красовалась броская надпись:

Все вкусное не дешево.

Все дешевое не вкусно.

Означают ли эти два предложения одно и то же, или их содержание различно?

С точки зрения логики оба предложения означают одно и то же. Они эквивалентны утверждению "нет ничего, что было бы вкусно и дешево". И все же, хотя эти предложения логически эквивалентны, их психологический подтекст различен. При чтении первого предложения в моем воображении возникает мысль о вкусном блюде, за которое стоит заплатить дорого. При чтении второго рождается мысль о недоброкачественно дешевом блюде. Не думаю, чтобы моя реакция была нетипичной.

Б. КТО ВЫ: ФИЗИК ИЛИ МАТЕМАТИК?

208.

Должно быть, многим известна задача о двух сосудах, в одном из которых содержится 10 мл воды, а в другом - 10 мл вина. Из сосуда с водой в сосуд с вином отливают 3 мл воды и после тщательного перемешивания 3 мл смеси переливают обратно в сосуд с водой. Спрашивается, чего больше: воды в сосуде с вином или вина в сосуде с водой?

Решать эту задачу можно двумя способами: "арифметически"

(подсчитать количество воды, внесенной при переливаниях в сосуд с вином, и вина, оказавшегося в сосуде с водой) и "физическим", основанным на здравом смысле. Я отдаю предпочтение физическому решению. При арифметическом подходе задача решается следующим образом. После того как в сосуд с вином влили 3 мл воды, в нем оказалось 13 мл смеси:

3/13 составляет вода и 10/13 вино. После переливания в сосуд с водой 3 мл смеси в нем оказалось 3*10/13 = 30/13 мл вина. До второго переливания в сосуде с вином находилось 3 мл воды, из них 3*3/13 мл было перелито в сосуд с водой.

Следовательно, после двух переливаний в сосуде с вином осталось 3 9/13 мл воды. Но 3 - 9/13 = 39/13 - 9/13 = 30/13. Таким образом, воды в сосуде с вином оказалось ровно столько же (а именно 30/13 мл), сколько вина в сосуде с водой.

Физическое решение приводит к ответу несравненно быстрее и, кроме того, подсказывает некую общую идею: поскольку количество жидкости в каждом сосуде после двух переливаний одинаково, то убыль воды в сосуде с водой восполнена вином, а убыль вина в сосуде с вином восполнена водой. Тем самым задача решена. Разумеется, здравый смысл не позволяет нам оценить величину убыли жидкости в каждом сосуде, в то время как арифметическое решение позволяет указать ее точный объем: 30/13 мл. Зато физическое решение применимо к следующей более общей задаче (перед которой арифметический подход оказывается бессильным).

Возьмем те же два сосуда с водой и с вином, что и в предыдущей задаче, и начнем переливать жидкость из одного сосуда в другой, не измеряя каждый раз, какой объем мы переливаем, и не подсчитывая, сколько раз мы производим переливание. Количество переливаемой жидкости может изменяться от одного переливания к другому, лишь бы по окончании всех операций в каждом сосуде снова оказалось по 10 мл жидкости. Спрашивается, чего больше: воды в сосуде с вином или вина в сосуде с водой?

Те же соображения, которые привели нас к физическому решению, позволяют утверждать, что посла всех переливаний воды в сосуде с вином окажется столько же, сколько вина в сосуде с водой, но их недостаточно, чтобы узнать, сколько именно жидкости перешло из одного сосуда в другой.

209.

В связи с предыдущей задачей у меня возник следующий вопрос. Представим себе, что первоначально в сосуд A налито 10 мл воды, а в сосуд B - 10 мл вина, и мы переливаем жидкость из одного сосуда в другой и обратно по 3 мл любое конечное число раз. Сколько переливаний требуется произвести, чтобы процентное содержание вина в обоих сосудах стало одинаковым?

Я имел в виду следующий ответ: за любое конечное число переливаний невозможно добиться равенства концентраций вина в обоих сосудах. Независимо от того, сколько вина в одном сосуде, сколько воды в другом и сколько жидкости переливается каждый раз из сосуда в сосуд и обратно (если только один сосуд при переливании не опоражнивается полностью), концентрация вина в сосуде B всегда останется выше, чем в сосуде A. Убедиться в этом можно при помощи простого рассуждения, использующего математическую индукцию. Первоначально концентрация вина в сосуде B, несомненно, выше, чем в сосуде A. Предположим, что после какого-то числа переливаний концентрация вина в сосуде B остается по-прежнему выше, чем в сосуде A. Переливая затем какое-то количество жидкости из сосуда B в сосуд A, мы будем переливать более крепкий раствор в более слабый.

  • Читать дальше
  • 1
  • ...
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: