Шрифт:
Возникают эти проблемы из-за принципиально разных подходов к переводу человека и машины. Квалифицированный переводчик понимает смысл текста и пересказывает его на другом языке словами и стилем, максимально близкими к оригиналу. Для компьютера этот путь выливается в решение двух задач: 1) перевод текста в некоторое внутреннее семантическое представление и 2) генерация по этому представлению текста на другом языке. Поскольку не только не решена сама по себе ни одна из этих задач, а нет даже общепринятой концепции семантического представления текстов, при автоматическом переводе приходится фактически делать "подстрочник", заменяя по отдельности слова одного языка на слова другого и пытаясь после этого придать получившемуся предложению некоторую синтаксическую согласованность. Смысл при этом может быть искажен или безвозвратно утерян.
Более реалистичными являются попытки создать системы автоматизированного перевода– программы, которые не берут на себя полностью весь перевод, а лишь помогают человеку-переводчику справиться с некоторыми трудностями (Computer Aided Translation). Одним из примеров таких систем является Eurolang Optimizer. Его можно рассматривать как нечто переходное между компьютерным словарем и программой-переводчиком, как некий набор предметно-ориентированных глоссариев, снабженный интерфейсом для удобства переводчика: предлагается несколько вариантов перевода, выделенные разными цветами в зависимости от условий применимости; переводчик может с помощью меню определенным образом настраивать словари для более быстрого и правильного выбора нужного эквивалента.
Подобные программные средства могут помочь в решении проблем, связанных с терминологией и вообще со знаниями переводчика о предметной области: одни и те же слова могут по-разному переводиться в зависимости от того, о каком предмете идет речь.
Автоматически может быть решена проблема согласованности. Понятно, что согласованность важна в рамках одного документа: один и тот же термин, даже если его без потери смысла можно перевести несколькими словосочетаниями, должен переводиться одинаково на протяжении всего документа. Однако еще более важной является согласованность в широком смысле - разработка и применение единой концепции интерпретации одного и того же термина на разных языках (скажем, американский разработчик программного обеспечения может быть недоволен, что термин dialog box переводится на итальянский как finestra (окно) и как boite (коробка, ящик) на французский). Ошибки, возникающие вследствие нарушения согласованности, являются серьезной проблемой, так как, имея только текст-результат перевода, уже невозможно установить, какие термины в оригинале были одинаковыми, а теперь переведены по-разному (в отличие от орфографических ошибок, которые исправить никогда не поздно).
В последнее время также появляются автоматизированные системы "доперевода" или "перевода изменений". Их возникновение связано с тем, что большинство технических текстов (описания, инструкции) не являются целиком новыми (как и явления, продукты, механизмы и т.п., ими описываемые), а содержат в себе лишь некоторые изменения, связанные, например, с усовершенствованием конструкции. Система "доперевода" извлекает из памяти знакомые предложения, а новые куски предлагает переводчику. Заметим, что такой человеко-машинный способ генерации новых текстов также помогает согласованности в стиле и терминологии при переходе от одной версии к другой.
Развитием систем подобного вида можно считать канадскую (Канада - двуязычная страна, постоянно сталкивающаяся с проблемой перевода на государственном уровне) систему генерации прогнозов погоды Forecast Generator (FOG). Можно считать, что в ней перевод полностью заменен генерацией текстов. В памяти системы хранится 20 миллионов слов и словосочетаний, связанных с прогнозами погоды, что позволяет генерировать как английский, так и французский вариант непосредственно из базы данных. Конечно, успешная работа этой системы в значительной мере объясняется ограниченной природой текстов: сообщения о погоде являются классическим примером подъязыка. Ограниченность словаря, грамматики и семантики дает возможность достичь отличных результатов сравнительно простыми методами.
1.2. Генерация текста
С необходимостью генерации хотя бы простейших фраз разработчики практических систем столкнулись еще на заре их создания. Даже в столь примитивно организованной (в плане дружественности пользовательского интерфейса) среде, как DOS, при попытке сгенерировать стандартное сообщение о количестве скопированных файлов мы сталкиваемся с проблемой построения фразы: в зависимости от этого количества необходимо использовать разные слова (в английской версии file в случае одного файла и files, если больше; в русской - и того хуже: могут встретиться варианты файл, файла и файлов, причем правила, в каком случае какой из них использовать, достаточно сложны).
По степени сложности и выразительности существующие методы генерации сообщений принято подразделять на 4 класса (часто используются комбинации методов). Рассмотрим их на примере генерации сообщений о копировании файлов.
1) Canned-based methods
Неизменяющийся шаблон - просто печать строки символов без каких-либо изменений.
Для генерации сообщений создаются таблицы шаблонов, которые будут выдаваться в зависимости от ситуации. В нашем варианте при копировании одного файла будет напечатана первая строка таблицы:
1 file copied,
а в случае, например, трех - третья:
3 files copied
2) Template-based methods
Изменяющийся шаблон - бесконтекстная вставка слов в образец-строку (именно этот метод используется в MS-DOS):
Шаблон: ‹Число› file(s) copied
может быть использован для генерации сообщений:
0 file(s) copied,
1 file(s) copied,
2 file(s) copied
3) Phrase-based methods