Шрифт:
Сэмми снисходительно улыбнулся.
– Это потому, что ты понятия не имеешь о работе математика, – сказал он. – Знаешь, что ответил великий Давид Гильберт, когда коллеги спросили его, почему он никогда не пытался доказать так называемую Последнюю теорему Ферма – это такая знаменитая нерешенная проблема?
– Не знаю. Просвети меня.
– Он сказал: «Зачем мне резать курицу, которая несет золотые яйца?» А имел он в виду вот что: когда сильный математик пытается решить крупную проблему, на свет появляется множество фундаментальных результатов – так называемых промежуточных, и это даже если главная проблема останется не решенной. Вот тебе пример, который ты поймешь: теория конечных групп возникла в результате попыток Эвариста Галуа решить уравнение пятой степени в общей форме…
Суть аргументов Сэмми сводилась к следующему: не может быть, чтобы великий математик (все признаки которого были в молодости у дяди Петроса) всю жизнь провел, копая такую величайшую задачу, как проблема Гольдбаха, и не получил ни единого промежуточного результата, имеющего хоть какую-то ценность. Однако он никогда ничего не публиковал, и потому мы с необходимостью должны заключить (тут Сэмми воспользовался одним из видов доказательства от противного), что он лжет. Он никогда не пытался решать проблему Гольдбаха.
– Но за каким чертом ему было так врать? – спросил я озадаченно.
– Гораздо более вероятно, что он сочинил эту историю с проблемой Гольдбаха, чтобы оправдать свое математическое бездействие – вот почему я употребил суровое слово «обманщик». Понимаешь, эта задача настолько трудна, что никто не может поставить ему в вину, что он ее не решил.
– Но это же абсурдно! – возмутился я. – Математика – это для дяди Петроса была жизнь, единственный интерес и единственная страсть! И вдруг он ее бросает и еще ищет предлог, чтобы оправдать собственное бездействие? Ерунда!
Сэм покачал головой.
– Да, такое объяснение довольно печально. Мне его предложил один уважаемый профессор с нашего факультета, когда я обсуждал с ним этот случай… – наверное, он посмотрел на мое лицо, потому что быстро добавил: -…без упоминания фамилии твоего дяди, конечно!
Далее Сэмми изложил теорию «уважаемого профессора».
– Вполне вероятно, что в какой-то момент своей карьеры твой дядя потерял либо интеллектуальные способности, либо силу воли (может быть, и то, и другое), необходимые, чтобы заниматься математикой. К несчастью, среди молодых ученых такое случается сплошь и рядом. Перегореть или сломаться – нередко именно такова судьба преждевременных гениев…
Огорчительное предположение, что столь же прискорбная судьба может ждать и самого Сэмми, явно пришло ему на ум: он произнес это заключение тоном серьезным, даже печальным.
– Так что, как видишь, дело не в том, что твой бедный дядя Петрос с какого-то момента не хотел заниматься математикой. Он просто не мог.
После новогоднего разговора с Сэмми мое отношение к дяде Петросу снова переменилось. Дикая ярость, владевшая мной с тех пор, как я узнал, что дядя обманом заставил меня решать проблему Гольдбаха, уступила место более милосердным чувствам. Теперь добавился еще и элемент сострадания: каким для него было ужасом после столь блестящего начала вдруг ощутить, как его великий дар, единственная сила, единственная радость в жизни, покидает его. Бедный дядя Петрос!
Чем больше я об этом думал, тем больше раздражения вызывал у меня этот неназванный «уважаемый профессор», смеющий произносить такие безапелляционные суждения о человеке, которого он никогда не видел, и при полном отсутствии данных. И Сэмми тоже хорош! Как это он вот так легко обозвал моего дядю «обманщиком»?
В конце концов я решил, что дяде Петросу надо дать шанс оправдаться и опровергнуть как поверхностные суждения своих братьев («жалкий неудачник» и пр.), так и уничижительный анализ «уважаемого профессора» и этого нахального гения Сэмми. Пришла пора дать слово обвиняемому. Нет смысла говорить, что наиболее подходящим слушателем для его защитительной речи я счел себя. Я его жертва и родственник. И вообще он у меня в долгу.
Телеграмму с извинением я разорвал на клочки, но содержание ее не забыл. Дядя отсылал меня к теореме Курта Гёделя о неполноте; каким-то образом она должна была объяснить его омерзительное поведение по отношению ко мне. (Я ничего не знал о теореме о неполноте, но название мне не понравилось. Отрицательная частица в начале слова несла тяжелый смысловой багаж; какие-то метафорические смыслы скрывались, казалось, в том вакууме, на который намекала частица «не».)
При первой возможности – это было, когда я выбирал себе курсы на следующий семестр, – я спросил у Сэмми, тщательно стараясь, чтобы он не заподозрил связи между моим вопросом и дядей Петросом:
– Ты слыхал что-нибудь про теорему Курта Гёделя о неполноте?
Сэмми воздел руки к небесам.
– Ой вей! – воскликнул он. – Он меня спрашивает, слыхал ли я о теореме Курта Гёделя о неполноте!
– Это из какой области? Из топологии? Сэмми уставился на меня как на привидение.
– Теорема о неполноте? Из математической логики, о невежда!
– Ладно, перестань дурачиться и расскажи мне, о чем там речь.
Сэмми пустился объяснять по главным направлениям великого открытия Гёделя. Начал он с Евклида и с его представления о построении математической теории, где в основании лежат аксиомы, а над ними с помощью средств строгой логической индукции выстраиваются теоремы. Потом Сэмми перепрыгнул через двадцать два столетия и заговорил о Второй проблеме Гильберта, пробежался по «Principia Mathematica» [11] Рассела и Уайтхеда и закончил самой теоремой о неполноте, которую изложил как можно более простым языком.
[11] «Principia Mathematica» – фундаментальная работа логиков Рассела и Уайтхеда, опубликованная в 1910 году, в которой они взяли на себя титанический труд построения математических теорий на твердом фундаменте логики. – Примеч. автора.