Шрифт:
Д. ч. может быть понята лишь на основе квантовой теории. Дифракция — явление волновое, оно наблюдается при распространении волн различной природы: дифракция света, звуковых волн, волн на поверхности жидкости и т.д. Дифракция при рассеянии частиц, с точки зрения классической физики, невозможна.
Квантовая механика устранила абсолютную грань между волной и частицей. Основным положением квантовой механики, описывающей поведение микрообъектов, является корпускулярно-волновой дуализм, т. е. двойственная природа микрочастиц. Так, поведение электронов в одних явлениях, например при наблюдении их движения в камере Вильсона или при измерении электрического заряда в фотоэффекте, может быть описано на основе представлений о частицах, в других же, особенно в явлениях дифракции, — только на основе представления о волнах. Идея «волн материи» была высказана французским физиком Л. де Бройлем в 1924 и вскоре получила блестящее подтверждение в опытах по Д. ч.
Согласно квантовой механике, свободное движение частицы с массой m и импульсом р = mv (где v — скорость частицы) можно представить как плоскую монохроматическую волну y (волну де Бройля) с длиной волны
l = h/p, (1)
распространяющуюся в том же направлении (например, в направлении оси х), в котором движется частица (рис. 1). Здесь h — Планка постоянная. Зависимость y от координаты х даётся формулой
y ~ cos (kx), (2)
где k = |k| = 2p/l — так называемое волновое число, а волновой вектор,
направлен в сторону распространения волны, или вдоль движения частицы.
Т. о., волновой вектор монохроматической волны, связанной со свободно движущейся микрочастицей, пропорционален её импульсу или обратно пропорционален длине волны.
Поскольку кинетическая энергия сравнительно медленно движущейся частицы E = mv2/2, длину волны можно выразить и через энергию:
При взаимодействии частицы с некоторым объектом — с кристаллом, молекулой и т.п. — её энергия меняется: к ней добавляется потенциальная энергия этого взаимодействия, что приводит к изменению движения частицы. Соответственно меняется характер распространения связанной с частицей волны, причём это происходит согласно принципам, общим для всех волновых явлений. Поэтому основные геометрические закономерности Д. ч. ничем не отличаются от закономерностей дифракции любых волн (см. Дифракция волн). Общим условием дифракции волн любой природы является соизмеримость длины падающей волны l с расстоянием d между рассеивающими центрами: l lb d.
Опыты по дифракции частиц и их квантовомеханическая интерпретация. Первым опытом по Д. ч., блестяще подтвердившим исходную идею квантовой механики — корпускулярно-волновой дуализм, явился опыт американских физиков К. Дэвиссона и Л. Джермера (1927) по дифракции электронов на монокристаллах никеля (рис. 2). Если ускорять электроны электрическим полем с напряжением V, то они приобретут кинетическую энергию E = eV, (е — заряд электрона), что после подстановки в равенство (4) числовых значений даёт
Здесь V выражено в в, а l — в А (1 А = 10– 8см). При напряжениях V порядка 100 в, которые использовались в этих опытах, получаются так называемые «медленные» электроны с l порядка 1 А. Эта величина близка к межатомным расстояниям d в кристаллах, которые составляют несколько А и менее, и соотношение l lb d, необходимое для возникновения дифракции, выполняется.
Кристаллы обладают высокой степенью упорядоченности. Атомы в них располагаются в трёхмерно-периодической кристаллической решётке, т. е. образуют пространственную дифракционную решётку для соответствующих длин волн. Дифракция волн на такой решётке происходит в результате рассеяния на системах параллельных кристаллографических плоскостей, на которых в строгом порядке расположены рассеивающие центры. Условием наблюдения дифракционного максимума при отражении от кристалла является Брэгга — Вульфа условие:
2dsin J = nl, (6)
здесь J — угол, под которым падает пучок электронов на данную кристаллографическую плоскость (угол скольжения), а d — расстояние между соответствующими кристаллографическими плоскостями.
В опыте Дэвиссона и Джермера при «отражении» электронов от поверхности кристалла никеля при определённых углах отражения возникали максимумы (рис. 3). Эти максимумы отражённых пучков электронов соответствовали формуле (6), и их появление не могло быть объяснено никаким другим путём, кроме как на основе представлений о волнах и их дифракции; т. о., волновые свойства частиц — электронов — были доказаны экспериментом.