Вход/Регистрация
Большая Советская Энциклопедия (СС)
вернуться

Большая Советская Энциклопедия

Шрифт:

Работы С. Л. Соболева в области математической физики вызвали необходимость изучения новых классов уравнений. Им введены новые функционально-аналитические методы исследования задач математической физики, ряд работ по математической физике выполнили Н. М. Гюнтер, Н. С. Кошляков и др.

М. В. Келдышем заложены основы теории несамосопряжённых операторов, которая применялась в исследованиях многочисленных учёных. Н. И. Мусхелишвили и его учениками получены важные результаты в области теории сингулярных интегральных операторов. Значит. работы проведены по спектральной теории операторов. Получено много результатов в изучении краевых задач смешанного типа и в теории квазилинейных систем. Ряд вопросов функционального анализа (теория нормированных колец, представления групп, обобщённые функции) изучался И. М. Гельфандом. Л. В. Канторовичем построена теория полуупорядоченных пространств. Л. И. Седовым предложены обобщённые вариационные принципы механики, дающие возможность описания необратимых процессов.

В теоретической физике Н. Н. Боголюбов и В. С. Владимиров применили к проблемам квантовой теории поля методы теории аналитических функций множества комплексных переменных и теории обобщённых функций. Н. Н. Боголюбовым построена теория сверхтекучести и установлен фундаментальный факт, что сверхпроводимость может рассматриваться как сверхтекучесть электронного газа. Н. Н. Боголюбовым предложена система аксиом квантовой теории поля, которая дала возможность строго доказать дисперсионные соотношения. В связи с изучением вопросов квантовой теории поля Н. Н. Боголюбовым и В. С. Владимировым получены важные результаты в теории функций многих комплексных переменных (теорема об «острие клина», о «С– выпуклой оболочке», о «конечной инвариантности» и др.). Важные результаты в области теоретической физики принадлежат также Л. Д. Фаддееву.

Многочисленные работы в области теории вероятностей и математической статистики ведутся со времён деятельности П. Л. Чебышёва и его учеников А. М. Ляпунова и А. А. Маркова. С. Н. Бернштейн завершил исследования по предельным теоремам типа Лапласа и Ляпунова, приводящим к нормальному закону распределения, и изучил условия применимости основной предельной теоремы к зависимым величинам. Существенные результаты в области теории вероятностей получены А. Я. Хинчиным. А. Н. Колмогоровым разработана общепринятая ныне аксиоматика теории вероятностей, основанная на понятии меры. В трудах А. Н. Колмогорова и его школы широкое развитие получила теория случайных процессов. Ряд предельных теорем теории вероятностей доказан Ю. В. Прохоровым и его учениками, в том числе теоремы о сходимости распределений, связанных с суммами независимых случайных величин, к распределениям некоторых случайных процессов. Авторами работ в области теории вероятностей являются также А. А. Боровков и др., а в области математической статистики — Н. В. Смирнов, исследовавший её непараметрические задачи, Л. Н. Большев и др. Ю. В. Линником введены новые аналитические методы, примененные им и его учениками к предельным теоремам и к задачам параметрической статистики. Ряду учёных принадлежат исследования в области теории надёжности и теории массового обслуживания.

Выдающееся значение имеют работы Н. Н. Боголюбова, В. М. Глушкова, А. А. Дородницына, М. В. Келдыша, Н. Е. Кочина, М. А. Лаврентьева, А. Н. Тихонова и других учёных по прикладной математике. А. А. Дородницыным и его сотрудниками созданы методы решения задачи обтекания тел в полной нелинейной постановке для звуковых, сверхзвуковых и гиперзвуковых скоростей. Н. Е. Кочиным исследованы вопросы движения вязкой жидкости. Границы применения математики всё более расширяются. Наряду с традиционными областями её применения, такими, как механика, физика, астрономия, возникли новые — экономика, биология и др. Ряд приложений математики к вопросам экономики разработал Л. В. Канторович.

Теорией приближённых вычислений занимался А. Н. Крылов. Современная вычислительная математика возникла из задач новой техники на основе использования классической математики и применения ЭВМ. Этим путём были решены важные задачи, относящиеся к проблеме овладения атомной энергией, к теории космического полёта и к другим вопросам. Появление ЭВМ поставило перед математикой ряд новых проблем, в частности посвященных изучению различных алгоритмов. В этой связи проведено сравнительное изучение алгоритмов для широкого круга задач, исследован вопрос о построении наилучших (или близких к наилучшим) алгоритмов, принадлежащих данному классу при различных критериях оптимальности. Важное значение для вычислит. техники имеет теория алгоритмических языков, дающая возможность унификации и упрощения программирования на ЭВМ.

А. Н. Тихоновым и его сотрудниками изучена задача численного интегрирования обыкновенных дифференциальных уравнений с разрывными коэффициентами и получены удобные для машинной реализации алгоритмы нахождения регуляризованного решения для многих некорректных задач математической физики; в той же области работают В. К. Иванов, М. М. Лаврентьев и др. В. М. Глушковым, А. А. Дородницыным, А. А. Самарским, а также Н. П. Бусленко, Н. Н. Говоруном, С. К. Годуновым, Е. В. Золотовым, В. А. Мельниковым, Н. Н. Моисеевым, В. В. Русановым и другими учёными много сделано для использования ЭВМ в решении разнообразных классов математических задач.

Среди научных учреждений, которые разрабатывают вопросы, связанные с вычислительной техникой, находятся Институт прикладной математики АН СССР (1963), Институт точной механики и вычислительной техники (1948, Москва), Вычислительный центр АН СССР (1955), Институт кибернетики АН УССР (1962, Киев) и др.

Советские математики принимают участие в работе Международного математического союза (с 1957) и Международных математических конгрессов (с 1928).

Периодические издания: «Математический сборник» (с 1866), «Труды Математического института им. В. А. Стеклова АН СССР» (с 1931), «Известия АН СССР. Серия математическая» (с 1937), «Успехи математических наук» (с 1936), «Теория вероятностей и ее применения» (с 1956), «Журнал вычислительной математики и математической физики» (с 1961), «Математические заметки» (с 1967), «Функциональный анализ и его приложения» (с 1967), «Теоретическая и математическая физика» (с 1969), «Украинский математический журнал» (с 1949), «Сибирский математический журнал» (с 1960), «Дифференциальные уравнения» (с 1965) и др.

См. Математика, Чисел теория, Алгебра, Логика, Геометрия, Топология, Функций теория, Функциональный анализ, Дифференциальные уравнения, Вероятностей теория, Математическая статистика, Вычислительная математика, Математические журналы.

К. К. Марджанишвили.

Астрономия

На территории СССР в разных районах имеется немало материальных памятников древней культуры, свидетельствующих об интересе к астрономическим наблюдениям в весьма отдалённую эпоху; таковы, в частности, сохранившиеся на С.-З. Европейской территории и в Средней Азии наскальные рисунки с астрономическим содержанием; это подтверждает и хорошо разработанная лунно-солнечная календарная система, которой с давних времён пользовались славянские народы. В 10—13 вв. на Руси получили распространение книги, содержащие, в частности, сведения об устройстве Вселенной, о причинах солнечных и лунных затмений и др. Много записей астрономического характера (о солнечных пятнах и протуберанцах, затмениях Солнца и Луны, появлениях комет и т. п.) имеется в русских летописях 11—13 вв. Уже в 7 в. получил распространение трактат по космографии армянского учёного Анании Ширакаци, содержавший астрономические сведения того времени. Больших успехов достигла астрономия в 10—15 вв. у народов Средней Азии на территориях, ныне входящих в СССР: Аль-Бируни из Хорезма принадлежит трактат о летосчислении народов мира, на обсерватории Улугбека в Самарканде выполнен ряд работ, среди которых особое значение имеет составление каталога положений 1019 звёзд.

  • Читать дальше
  • 1
  • ...
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: