Вход/Регистрация
Логика
вернуться

Ивин Александр Архипович

Шрифт:

Здесь «если А, то B » и «А » — посылки, «B » — заключение; горизонтальная черта стоит вместо слова «следовательно». Другая запись:

Если А, то B. А. Следовательно, В.

Благодаря этому правилу от посылки «если А, то В », используя посылку «А », мы как бы отделяем заключение «B ». Например:

Если у человека грипп, он болен.

У человека грипп.

Человек болен.

Это правило постоянно используется в наших рассуждениях. Впервые оно было сформулировано, насколько можно судить, учеником Аристотеля Теофрастом ещё в III в. до н.э.

Соответствующий правилу отделения логический закон формулируется так:

(А → В) & А → В,

если верно, что если А, то В, и А, то верно В. Например: «Если при дожде трава растёт быстрее и идёт дождь, то трава растёт быстрее».

Рассуждение по правилу модус понёс идёт от утверждения основания истинного условного высказывания к утверждению его следствия. Это логически корректное движение мысли иногда путается со сходным, но логически неправильным её движением от утверждения следствия истинного условного высказывания к утверждению его основания.

Например, правильным является умозаключение:

Если висмут — металл, он проводит электрический ток.

Висмут — металл.

Висмут проводит электрический ток.

Но внешне сходное с ним умозаключение:

Если висмут — металл, он проводит электрический ток.

Висмут проводит электрический ток.

Висмут металл.

логически некорректно. Рассуждая по последней схеме, можно от истинных посылок прийти к ложному заключению. Например:

Если человек собирает марки, он коллекционер.

Человек — коллекционер.

Человек собирает марки.

Далеко не все коллекционеры собирают именно марки; из того, что человек коллекционер, нельзя заключать, что он собирает как раз марки. Истинность посылок не гарантирует истинности заключения.

Против смешения правила модус поненс с указанной неправильной схемой предостерегает совет: от подтверждения основания к подтверждению следствия заключать можно, от подтверждения следствия к подтверждению основания — нет.

МОДУС ТОЛЛЕНС

Так средневековые логики называли следующую схему рассуждения:

Другая запись:

Если А, то В. Не-B. Следовательно, не-A.

Эта схема часто называется принципом фальсификации: если из какого-то утверждения вытекает следствие, оказывающееся ложным, это означает, что и само утверждение ложно. Посредством схемы от утверждения условного высказывания и отрицания его следствия осуществляется переход к отрицанию основания данного высказывания. Например:

Если гелий — металл, он электропроводен.

Гелий неэлектропроводен.

Гелий — не металл.

МОДУС ПОНЕНДО ТОЛЛЕНС

Этим именем средневековые логики обозначали следующие схемы рассуждения:

Другая запись:

Либо А, либо В. А. Следовательно, не-B.

Либо А, либо В. В. Следовательно, не-А.

Посредством этих схем от утверждения двух взаимоисключающих альтернатив и установления того, какая из них имеет место, осуществляется переход к отрицанию второй альтернативы: либо первое, либо второе, но не оба вместе; есть первое; значит, нет второго. Например:

Достоевский родился либо в Москве, либо в Петербурге.

Он родился в Москве.

Неверно, что Достоевский родился в Петербурге.

Дизъюнкция, входящая в данную схему, является исключающей, она означает: истинно первое или истинно второе, но не оба вместе. Такое же рассуждение, но с неисключающей дизъюнкцией (первое или второе, но возможно, что и первое, и второе), логически неправильно. От истинных посылок оно может вести к ложному заключению:

На Южном полюсе был Амундсен или был Скотт.

  • Читать дальше
  • 1
  • ...
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: