Миркес Е. М.
Шрифт:
Все программы, кроме программы Hopfield.
При построении метода обучения Вы пользуетесь следующей схемой:
Использовать MParTan Да или Нет
↓
↓
Организация обучения Усредненная Позадачная Задаче номер
↓
Вычисление направления Случайный спуск Градиентный спуск
↓
Метод оценивания Метод наименьших квадратов Расстояние до множества
↓
Данная программа предусматривает два способа вычисления направления спуска. Первый способ известен как Случайный поиск, а второй как метод наискорейшего спуска. В первом случае в качестве направления спуска используется случайный вектор, а во втором — вектор антиградиента функции оценки.
Этот пункт позволяет задать параметр Случайного изменения карты. Уровень УДАРА должен лежать в пределах от 0.001 до 1.
Все программы, кроме программы Hopfield.
При построении метода обучения Вы пользуетесь следующей схемой:
Использовать MParTan Да или Нет
↓
↓
Организация обучения Усредненная Позадачная Задаче номер
↓
Вычисление направления Случайный спуск Градиентный спуск
↓
Метод оценивания Метод наименьших квадратов Расстояние до множества
↓
Входными параметрами процедуры спуска являются
1. Начальная карта.
3. Локальное обучающее множество.
4. Процедура вычисления оценки.
Алгоритм процедуры спуска:
1. Вычисляем оценку по локальному обучающему множеству (Е1).
2. Делаем пробный шаг, добавляя к начальной карте вектор направления спуска умноженный на шаг S.
3. Вычисляем оценку по локальному обучающему множеству (Е2).
4. Если Е2<E1, то увеличиваем шаг S, полагаем E1=E2 и повторяем шаги алгоритма 1–4 до тех пор, пока не станет E2>E1. Карта, которой соответствует оценка E1,и является результатом работы процедуры.
5. Если после первого выполнения шага 3 оказалось, что E2>E1, то уменьшаем шаг S, полагаем E1=E2 и повторяем шаги алгоритма 1–3 и 5 до тех пор, пока не станет E2<E1. Карта, которой соответствует оценка E1, и является результатом работы процедуры.
Все программы, кроме программыHopfield.
При построении метода обучения Вы пользуетесь следующей схемой:
Использовать MParTan Да или Нет
↓
↓
Организация обучения Усредненная Позадачная Задаче номер
↓
Вычисление направления Случайный спуск Градиентный спуск
↓
Метод оценивания Метод наименьших квадратов Расстояние до множества
↓
В данной программе принят способ кодирования ответа номером канала: номер того из пяти ответных нейронов, который выдал на последнем такте функционирования наибольший сигнал, задает номер класса, к которому сеть отнесла предъявленный образ. Оценка, таким образом, может быть вычислена только для задачи, ответ которой известен.
Данная программа предусматривает два различных способа оценивания решения. Различие в способах оценки связано с различием требований, накладываемых на обученную сеть. Пусть пример относится к N-ой задаче. Тогда требования можно записать так:
Метод наименьших квадратов (Программа Pade)
N-ый нейрон должен выдать на выходе 1.
Остальные нейроны должны давать на выходе 0 (как можно более близкое к 0 число).
Метод наименьших квадратов (Программы Sigmoid и Sinus).
N-ый нейрон должен выдать на выходе 1 (поскольку сигнал 1 для нейрона невозможен (см. Нейрон), то число как можно более близкое к 1).
Остальные нейроны должны давать на выходе –1 (как можно более близкое к –1 число).