Вход/Регистрация
Собрание сочинений, том 20
вернуться

Энгельс Фридрих

Шрифт:

Только незнакомство наших современных естествоиспытателей с иной философией, кроме той ординарнейшей вульгарной философии, которая господствует ныне в немецких университетах, позволяет им в таком духе оперировать выражениями вроде «механический», причем они не отдают себе отчета или даже не подозревают, к каким вытекающим отсюда выводам они тем самым с необходимостью обязывают себя. Ведь у теории об абсолютной качественной тождественности материи имеются свои приверженцы; эмпирически ее так же нельзя опровергнуть, как и нельзя доказать. Но если спросить людей, желающих объяснить все «механическим образом», сознают ли они неизбежность этого вывода и признают ли они тождественность материи, то сколько различных ответов услышим мы на этот вопрос!

Самое комичное — это то, что приравнение «материалистического» и «механического» идет от Гегеля, который хотел унизить материализм эпитетом «механический». Но дело в том, что критикуемый Гегелем материализм — французский материализм XVIII века — был действительно исключительно механическим, и по той весьма естественной причине, что в то время физика, химия и биология были еще в пеленках и отнюдь не могли служить основой для некоторого общего воззрения на природу. Точно так же у Гегеля заимствует Геккель перевод выражения causae efficientes через «механически действующие причины» и выражения causae finales — через «целесообразно действующие причины»; но Гегель понимает здесь под словом «механический» — слепо, бессознательно действующий, а не механический в геккелевском смысле. При этом для самого Гегеля все это противоположение до такой степени является превзойденной точкой зрения, что он даже не упоминает о нем ни в одном из обоих своих изложений причинности в «Логике» и затрагивает его только в «Истории философии», в тех местах, где оно выступает как исторический факт (следовательно, у Геккеля мы имеем здесь чистое недоразумение, результат поверхностности!), и совершенно мимоходом при рассмотрении телеологии («Логика», кн. III, отд. II, гл. 3), где об этом противоположении упоминается как о той форме, в которой старая метафизика формулировала противоположность между механизмом и телеологией. Вообще же он трактует указанное противоположение как давно уже преодоленную точку зрения. Таким образом, Геккель просто неверно списал у Гегеля, радуясь тому, что он здесь, как ему показалось, нашел подтверждение своей «механической» концепции, и этим путем он приходит к тому блестящему результату, что когда естественный отбор создает у того или другого животного или растения какое-нибудь определенное изменение, то это происходит благодаря causa efficiens; если же это самое изменение вызывается искусственным отбором, то это происходит благодаря causa finalis! Селекционер есть causa finalis! Конечно, диалектик калибра Гегеля не мог путаться в пределах узкой противоположности между causa efficiens и causa finalis. А для теперешней стадии развития науки всей бесплодной болтовне об этой противоположности кладет конец то обстоятельство, что мы знаем из опыта и теории, что материя и ее способ существования — движение — несотворимы и, следовательно, являются своими собственными конечными причинами; между тем как у тех отдельных причин, которые на отдельные моменты времени и в отдельных местах изолируют себя в рамках взаимодействия движения вселенной или изолируются там нашей мыслью, не прибавляется решительно никакого нового определения, а лишь вносящий путаницу элемент в том случае, если мы их называем действующими причинами. Причина, которая не действует, не есть вовсе причина.

NB. Материя как таковая, это — чистое создание мысли и абстракция. Мы отвлекаемся от качественных различий вещей, когда объединяем их, как телесно существующие, под понятием материи. Материя как таковая, в отличие от определенных, существующих материй, не является, таким образом, чем-то чувственно существующим. Когда естествознание ставит себе целью отыскать единообразную материю как таковую и свести качественные различия к чисто количественным различиям, образуемым сочетаниями тождественных мельчайших частиц, то оно поступает таким же образом, как если бы оно вместо вишен, груш, яблок желало видеть плод как таковой [452] , вместо кошек, собак, овец и т. д. — млекопитающее как таковое, газ как таковой, металл как таковой, камень как таковой, химическое соединение как таковое, движение как таковое. Теория Дарвина требует подобного первичного млекопитающего, Promammale Геккеля [453] , но должна в то же время признать, что если оно содержало в себе в зародыше всех будущих и ныне существующих млекопитающих, то в действительности оно стояло ниже всех теперешних млекопитающих и было первобытно грубым, а поэтому и более преходящим, чем все они. Как доказал уже Гегель («Энциклопедия», ч. I, стр. 199), это воззрение, эта «односторонне математическая точка зрения», согласно которой материя определима только количественным образом, а качественно искони одинакова, есть «не что иное, как точка зрения» французского материализма XVIII века [454] . Она является даже возвратом к Пифагору, который уже рассматривал число, количественную определенность, как сущность вещей.

452

См. примечание 426.

453

Е. Haeckel. «Naturliche Schopfungsgeschichte». 4. Aufl., Berlin, 1873, S. 538, 543, 588; «Anthropogenie». Leipzig, 1874, S. 460, 465, 492.

454

Гегель. «Энциклопедия философских наук», § 99, Добавление.

* * *

Во-первых, Кекуле [455] . Далее: систематизацию естествознания, которая становится теперь все более и более необходимой, можно найти не иначе, как в связях самих явлений. Так, механическое движение небольших масс на каком-нибудь небесном теле кончается контактом двух тел, который имеет две формы, отличающиеся друг от друга лишь по степени: трение и удар. Поэтому мы изучаем сперва механическое действие трения и удара. Но мы находим, что дело этим не исчерпывается: трение производит теплоту, свет и электричество; удар — теплоту и свет, а, может быть, также и электричество. Таким образом, мы имеем превращение движения масс в молекулярное движение. Мы вступаем в область молекулярного движения, в физику, и продолжаем исследовать дальше. Но и здесь мы находим, что исследование молекулярным движением не заканчивается. Электричество переходит в химические превращения и возникает из химических превращений; теплота и свет тоже. Молекулярное движение переходит в атомное движение: химия. Изучение химических процессов находит перед собой, как подлежащую исследованию область, органический мир, т. е. такой мир, в котором химические процессы происходят согласно тем же самым законам, но при иных условиях, чем в неорганическом мире, для объяснения которого достаточно химии. А все химические исследования органического мира приводят в последнем счете к такому телу, которое, будучи результатом обычных химических процессов, отличается от всех других тел тем, что оно есть сам себя осуществляющий перманентный химический процесс, — приводят к белку. Если химии удастся изготовить этот белок в том определенном виде, в котором он, очевидно, возник, в виде так называемой протоплазмы, — в том определенном или, вернее, неопределенном виде, в котором он потенциально содержит в себе все другие формы белка (причем нет нужды принимать, что существует только один вид протоплазмы), то диалектический переход будет здесь доказан также и реально, т. е. целиком и полностью. До тех пор дело остается в области мышления, alias [иначе говоря. Ред.] гипотезы. Когда химия порождает белок, химический процесс выходит за свои собственные рамки, как мы видели это выше относительно механического процесса. Он вступает в некоторую более богатую содержанием область — область органической жизни. Физиология есть, разумеется, физика и в особенности химия живого тела, но вместе с тем она перестает быть специально химией: с одной стороны, сфера ее действия ограничивается, но, с другой стороны, она вместе с тем поднимается здесь на некоторую более высокую ступень.

455

Этот отрывок написан на отдельном листе, снабженном пометкой «Noten» («Примечания»). Возможно, что он представляет собой первоначальный набросок второго «Примечания» к «Анти-Дюрингу»: «О «механическом» понимании природы» (см. настоящий том, стр. 566—570).

[МАТЕМАТИКА]

* * *

Так называемые аксиомы математики — это те немногие мыслительные определения, которые необходимы в математике в качестве исходного пункта. Математика — это наука о величинах; она исходит из понятия величины. Она дает последней скудную, недостаточную дефиницию и прибавляет затем внешним образом, в качестве аксиом, другие элементарные определенности величины, которые не содержатся в дефиниции, после чего они выступают как недоказанные и, разумеется, также и недоказуемые математически. Анализ величины выявил бы все эти аксиоматические определения как необходимые определения величины. Спенсер прав в том отношении, что кажущаяся нам самоочевидность этих аксиом унаследована нами. Они доказуемы диалектически, поскольку они не чистые тавтологии.

* * *

Из области математики. Ничто, кажется, не покоится на такой непоколебимой основе, как различие между четырьмя арифметическими действиями, элементами всей математики. И тем не менее уже с самого начала умножение оказывается сокращенным сложением, деление — сокращенным вычитанием определенного количества одинаковых чисел, а в одном случае — если делитель есть дробь — деление производится путем умножения на обратную дробь. А в алгебре идут гораздо дальше этого. Каждое вычитание (a — b) можно изобразить как сложение (—b+a), каждое деление a/b, как умножение ax1/b. При действиях со степенями идут еще значительно дальше. Все неизменные различия математических действий исчезают, всё можно изобразить в противоположной форме.

Степень — в виде корня (х2 = x4), корень — в виде степени ( x = х2). Единицу, деленную на степень или на корень, — в виде степени знаменателя ( 1/ x = х 2; /х3= х ). Умножение или деление степеней какой-нибудь величины превращается в сложение или вычитание их показателей. Каждое число можно рассматривать и изображать в виде степени всякого другого числа (логарифмы, y = ax). И это превращение из одной формы в другую, противоположную, вовсе не праздная игра, — это один из самых могучих рычагов математической науки, без которого в настоящее время нельзя произвести ни одного сколько-нибудь сложного вычисления. Пусть кто-нибудь попробует вычеркнуть из математики хотя бы только отрицательные и дробные степени, — и он увидит, что без них далеко не уедешь.

(— . — = +, : = + —1 и т. д. разобрать до этого).

Поворотным пунктом в математике была Декартова переменная величина. Благодаря этому в математику вошли движение и тем самым диалектика и благодаря этому же стало немедленно необходимым дифференциальное и интегральное исчисление, которое тотчас и возникает и которое было в общем и целом завершено, а не изобретено, Ньютоном и Лейбницем.

* * *
  • Читать дальше
  • 1
  • ...
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: