Шрифт:
«Добавление» четвертого измерения изменило бы и некоторые чисто геометрические свойства трехмерного мира. Одним из важных разделов геометрии, который представляет не только теоретический, но и большой практический интерес, является так называемая теория преобразований. Речь идет о том, как изменяются различные геометрические фигуры при переходе от одной системы координат к другой. Один из таких типов геометрических преобразований именуют «конформным». Так называются преобразования, сохраняющие углы.
Представим себе какую-нибудь простую геометрическую фигуру, например, квадрат или многоугольник. Наложим на него произвольную сетку линий, своеобразный «скелет». Тогда «конформными» мы назовем такие преобразования системы координат, при которых наш квадрат или прямоугольник перейдет в любую другую фигуру, но так, что углы между линиями «скелета» сохранятся. Наглядным примером «конформного» преобразования может служить перенесение изображений с поверхности глобуса (и вообще с любой сферической поверхности) на плоскость – именно таким путем строятся географические карты.
Еще в XIX столетии выдающийся математик Бернгард Риман показал, что любая плоская сплошная (то есть без «дыр», или, как говорят математики, «односвязная») фигура может быть конформно преобразована в круг. Современник Римана Жорж Лиувилль доказал еще одну важную теорему о том, что не всякое трехмерное тело может быть конформно преобразовано в шар!
Таким образом, в трехмерном пространстве возможности конформных преобразований далеко не так широки, как в плоскости. Добавление всего лишь одной оси координат накладывает на геометрические свойства пространства весьма жесткие дополнительные ограничения.
Не потому ли наше реальное пространство именно трехмерно, а не двумерно или, например, пятимерно? Может быть, все дело в том, что двумерное пространство слишком свободно, а геометрия пятимерного мира, наоборот, чересчур жестко «закреплена»?
А в самом деле – почему? Почему пространство, в котором мы живем, трехмерно, а не четырехмерно или пятимерно?
Некоторые ученые пытались ответить на этот вопрос, исходя из весьма общих философских соображений. Мир должен быть совершенным, утверждал, например, Аристотель, и только три измерения способны это совершенство обеспечить.
Следующий шаг сделал Галилей, отметивший тот факт, что в нашем мире могут существовать только три взаимно перпендикулярные направления. Однако выяснением причин подобного положения вещей Галилей не занимался.
Сделать это попытался Лейбниц, впрочем, с помощью чисто геометрических доказательств. Но эти доказательства строились умозрительно, вне связи с реально существующим миром и его свойствами.
Между тем то или иное число измерений – это физическое свойство реального пространства, и оно должно быть следствием вполне определенных физических причин: каких-то глубоких физических закономерностей.
Ответ на этот вопрос удалось получить только во второй половине XX столетия, когда был сформулирован так называемый антропный принцип, отразивший глубочайшую связь между самим существованием человека и фундаментальными свойствами Вселенной. Но эту проблему мы рассмотрим позже.
И, наконец, еще один вопрос. В теории относительности идет речь о четырехмерном пространстве Вселенной. Однако это не совсем то четырехмерное пространство, о котором говорилось выше: четвертым измерением в нем является время. Как известно, теория относительности установила тесную связь между пространством и материей. Но не только. Оказалось, что непосредственно связаны между собой также материя и время! А, следовательно, пространство и время! Имея в виду эту зависимость, известный математик Г. Минковский, работы которого легли в основу теории относительности, утверждал: «Отныне пространство само по себе и время само по себе должны стать тенями, и только особого рода их сочетание сохранит самостоятельность». Именно Минковский предложил использовать для математического выражения взаимозависимости пространства и времени условную геометрическую модель – четырехмерное «пространство-время». В этом условном пространстве по трем основным осям, как и обычно, откладываются интервалы длины, по четвертой же оси – интервалы времени.
Таким образом, четырехмерное «пространство-время» теории относительности является всего-навсего математическим приемом, вспомогательной математической конструкцией, позволяющей в удобной форме описывать различные физические процессы. Поэтому утверждать, что мы живем в четырехмерном пространстве, можно лишь в том смысле, что все происходящие в мире события совершаются не только в пространстве, но и во времени.
Разумеется, в любых математических построениях, даже в самых абстрактных, находят свое отражение какие-то стороны реальной действительности, какие-то отношения между реально существующими предметами и явлениями. Но было бы грубой ошибкой ставить знак равенства между вспомогательным математическим аппаратом, а также применяемой в математике специфической условной терминологией и объективной реальностью.
В этой связи стоит упомянуть о том, что в математической физике нередко используется прием, который получил название построения «фазовых пространств». Речь идет об условных физико-математических конструкциях, в которых определенные физические параметры, например, масса, импульс, энергия, скорость движения, момент количества движения и т.д., рассматриваются как величины, откладываемые по чисто условным «осям координат». В таких «фазовых пространствах» поведение того или иного физического объекта или системы выглядит как его перемещение по некоторой условной «траектории». И хотя подобный прием является чисто условным, он позволяет – что весьма удобно – получать наглядное представление о состоянии и поведении изучаемого объекта.