Шрифт:
Следующим условием является расчет противостояния системы бронирования корпуса действию снаряда на траверзном угле (курсовой 90°). Оно вытекает как из необходимости упрощения расчетов (удаляется операция для поправки на горизонтальный угол) так и, главным образом, из факта наиболее невыгодной работы брони в данных условиях. Б боевой обстановке реализация подобного условия имела бы определенную вероятность при бое на око-лотраверзных углах (курсовой 70-110°), поскольку в подобном случае снабженные мягкими бронебойными наконечниками снаряды при ударе в броню совершали бы "доворот" до углов, близких к нормали, что существенно улучшало бы условия их работы по броневой преграде.
Расчет устойчивости системы бронирования корпуса каждого проекта на действие артиллерии его противника сделан по их описаниям в исследовательской литературе, имеющейся в распоряжении автора. В использованной для расчетов базе данных имелись исчерпывающие сведения по лишь трем проектам: русскому линкору, а также японским «Нагато» и «Амаги». Система защитных элементов «Тоза» была принята на основе японских источников, в которых она не отражается со всей полнотой. Ряд допущений пришлось принять и в отношении британского «Джи-3». доступного по подробному (но также неполному) описанию Дж. Кемпбелла. Характеристики американских «Мериленда» и «Саут Дакоты» даны по исследованию Н. Фридмана. Таким образом, настоящая оценочная модель не претендует на исчерпывающую полноту, и имеет возможность для определенного совершенствования в рамках более точных данных.
Применяемая для расчетов бронепробития формула Жакоба де-Мара первоначально приводилась им для соотношения толщины пробиваемой броневой плиты и калибра снаряда, и имела следующий вид:
В/D = К х (Р/D3)0,714 х D0,0714 х Vтр, где -
В — толщина пробиваемой броневой плиты в дециметрах,
D — калибр орудия в дециметрах,
К — коэффициент бронепробиваемости, зависящий от качества брони и бронебойных свойств снаряда. В метрических мерах К=2134 для снаряда с бронебойным наконечником («макаровским колпачком») и К=2456 для снаряда без наконечника (по В.П. Костенко).
Р — вес снаряда в кг,
Vтр — скорость, необходимая для пробития брони снарядом в целом виде в м/сек,
Отсюда формула для толщины броневой плиты сводится к виду:
В = К х (Vтр1,43 х Р0,714/D1,07) х (cos )1,43, где -
— угол между траекторией и нормалью к пробиваемой броневой плите.
Метод
Методом оценки степени устойчивости бронирования проекта русского линкора 1917 г. сравнительно с его зарубежными аналогами является сопоставление диаграмм полного пробития всех комбинаций броневых преград жизненных частей корпуса для сравниваемых проектов — варианта № 2 проекта линкора заводе «Наваль» (44000 т, 9 16"/45 орудий, 30 уз) с каждым из его вероятных противников 20-х гг.: американскими «Мерилендом» и «Саут Дакотой», японскими «Нагато», «Тоза», «Амаги», «Овари», а также с британским «Джи-3». Сравнение с «Лексингтоном», ввиду его низкого уровня броневой защиты, не проводилось. В окончательном виде сопоставление скоростных характеристик всех пар кораблей с учетом итогов сравнения их бронирования позволяет оценить и степень тактического перевеса каждого из них.
Расчеты устойчивости бронирования произведены в широком диапазоне наиболее вероятных боевых дистанций (40 — 120 кб). Приведенные ниже диаграммы выполнены в координатах «дистанция/линейная проекция поражения жизненных частей корабля при миделе» (т. е. проекция всех групп броневых прикрытий на прямую, перпендикулярную углу падения неприятельского снаряда для данной дистанции), и не учитывают уменьшения ширины корабля ближе к оконечностям, что несколько сокращает проекцию поражения в сечениях, удаленных от середины. Они не учитывают также и длину цитадели, формирующую протяженность защищенного броней пространства корпуса, внутри которого находятся все жизненные части корабля. Ее длина прямо влияет на абсолютную площадь поражаемой проекции корпуса, поскольку корабль с менее протяженной цитаделью теоретически имеет меньшую вероятность получения попадания в нее, нежели корабль с более протяженной — это относится прежде всего к проектам быстроходных тяжелых кораблей, у которых для развития высоких скоростей существенно увеличивается протяженность машинно-котельных отделений. Для подобного случая потребовалось бы создание несколько более усложненной модели, необходимость в которой лежит вне рамок настоящего исследования. Однако подобная модель не меняет существенно результатов проведенного сравнения.
Линейная проекция поражения во всех случаях рассчитывалась для миделевого сечения, поскольку в данном случае наибольшая ширина корпуса дает и наиболее протяженную проекцию поражения. Она рассчитывается графически, исходя из угла падения снаряда (вычисляется по общеизвестным формулам внешней баллистики, см. табл. 10.7-10.11) того 16" орудия, на противостояние которому проводится расчет данной системы бронирования, через каждые 5 кб дистанции. Выявляется комплекс из 17 прямых (направлений падения снаряда в диапазоне 40-120 кб через каждые 5 кб), перпендикуляр к каждой из которых с проекцией всех групп бронирования на него является общей проекцией поражения по траверзу для данного корабля.
Поскольку для начальных дистанций в рассматриваемом диапазоне (в районе 40–50 кб) имеется еще значительная настильность траектории поражающего снаряда (углы паления 4–5°), общая проекция поражения в этом случае в основном состоит из суммы проекций вертикальных прикрытий (поясов и переборок в комбинации со скосами). При увеличении дистанции свыше 80 кб все большую роль начинает приобретать составляющая групп горизонтальных броневых прикрытий (палуб в комбинации со скосами). На дистанциях 100–120 кб (углы падения снаряда 24–40°) доля группы горизонтальных прикрытий составляет уже 60–70°, значительно увеличивая общую проекцию поражения (в 2,5–3 раза по сравнению с начальными дистанциями).
Участки, оттененные на диаграммах сплошной штриховкой — область полного пробития для данной дистанции соответствующих групп броневых прикрытий. Пунктирная штриховка означает пробитие группы бронирования с меньшей суммарной толщиной для тех направлений, где имеется единый состав элементов бронирования, но различная их толщина (например — для японского «Тоза», с учетом уменьшения толщины главной палубы с 163 до 100 мм и тыльной переборки с 75 до 50 мм на протяжении машинно-котельных отделений корабля).