Шрифт:
Причиной для такого сомнения служат практически ненаблюдаемые элементарные частицы, которые возникают при превращении водорода в гелий и почти никак не влияют на процессы, происходящие на Солнце. Это сомнение возникло в результате эксперимента, который был проведен в заброшенной шахте по добыче золота в штате Южная Дакота (США).
Этой частицей является нейтрино. Оно не имеет электрического заряда и практически лишено массы. Нейтрино перемещается со скоростью света. При описании протон-протонной цепочки реакций мы видели, что всякий раз, когда сливаются два ядра водорода, возникают позитрон и нейтрино (см. верхнюю схему на рис. 3.3 ). Позитрон очень быстро аннигилирует с электроном, в результате чего возникает квант света. Другая судьба у нейтрино. Нейтрино не реагирует с другими элементарными частицами и улетает из места своего возникновения по прямолинейной траектории, нигде не отклоняясь. Окружающее солнечное вещество никак не влияет на нейтрино. Для возникшей новой частицы солнечное вещество как бы не существует. Чтобы полностью защититься от прилетающих к нам нейтрино, потребовалось бы воздвигнуть стену, толщина которой, выраженная в километрах, составляет пятнадцатизначное число. К счастью, от нейтрино не нужно защищаться, поскольку они пролетают сквозь нас, не взаимодействуя ни с одним атомом нашего тела.
Таким образом, нейтрино, возникшие в центре Солнца, улетают по прямолинейным траекториям в пространство и некоторые из них могут достичь поверхности Земли. Для этих частиц не имеет значения, ночь или день стоит в это время на Земле. Днем они прилетают сверху, а ночью — снизу, свободно пронзая земной шар. Если бы у нас был нейтринный телескоп, то с его помощью мы могли бы увидеть в центре Солнца маленькое яркое пятно. Это — область, в которой происходят ядерные реакции водородного цикла и где возникают нейтрино. С помощью такого телескопа мы могли бы увидеть это яркое пятно и ночью, после захода Солнца. Нужно было бы только направить наш телескоп не на небо, а вниз, к Земле, вслед за суточным движением Солнца, так как Земля прозрачна для нейтринного излучения.
Но, к сожалению, нейтринного телескопа не существует, поскольку, чтобы его построить, нужно уметь отклонять нейтрино от прямолинейного пути с помощью линз или зеркал, как отклоняют свет в фотоаппарате или электроны в электронном микроскопе. Но нейтрино всегда летят прямолинейно.
К счастью, существуют изотопы, с помощью которых можно устроить хотя и очень небольшое, но заметное препятствие для нейтрино. Наиболее известным из них является изотоп элемента хлора Сl37. Если атомы вообще могут останавливать нейтрино, то легче всего это сделать с помощью изотопа Сl37. В тех редких случаях, когда нейтрино сталкивается с ядром атома хлора, это ядро испускает электрон и возникает атомное ядро элемента аргона (рис. 5.5). В результате реакции возникает не обычный атом этого благородного газа, а изотоп, который распадается приблизительно через 35 дней. На этой реакции основана идея известного эксперимента Раймонда Девиса по изучению солнечных нейтрино. [13] Этот эксперимент известен главным образом тем, что он поставил перед астрофизиками чрезвычайно затруднительные вопросы. Но прежде чем рассказать о нем, мы обсудим еще некоторые трудности.
13
Метод регистрации солнечных нейтрино был предложен в 1946 г. академиком Б. М. Понтекорво. — Прим, перев.
Рис. 5.5. Нейтрино может привести к превращению атома хлора в атом аргона. При этом освобождается электрон.
С атомами хлора могут взаимодействовать только нейтрино высоких энергий. Нейтрино, которые возникают в реакциях протон-протонной цепочки, обладают слишком низкой энергией. Они не могут взаимодействовать с атомами хлора. Позволяют ли нам наши представления о строении звезд найти на Солнце источник нейтрино с высокими энергиями? Оказывается, что наряду с протон-протонной цепочкой происходят другие, сопутствующие ядерные реакции. Эти реакции не вносят практически никакого вклада в выделение энергии на Солнце, и поэтому мы их пока не рассматривали. Среди этих реакций есть одна, которая происходит тем чаще, чем больше гелия образовалось в недрах звезды. Она схематически показана на рис. 5.6. Нормальный атом гелия с массовым числом 4 сталкивается с ядром изотопа гелия с массовым числом 3. При этом возникает бериллий с массовым числом 7. Если с этим атомом до того, как он самопроизвольно распадется, столкнется протон, то возникнет изотоп бора с массовым числом 8. Такие атомы бора тоже радиоактивны, и они через некоторое время снова превращаются в атомы бериллия. Но в результате такого превращения образуются позитрон и нейтрино с высокой энергией.
Рис. 5.6. В побочной цепи реакций, протекающих наряду с реакциями водородного цикла (см. рис. 3.3 ), возникает радиоактивный изотоп бериллия Be8, который испускает позитрон и нейтрино высокой энергии. Красными волнистыми стрелками обозначено испускание квантов света.
Нейтрино, возникающие при такой реакции, как раз подходят для взаимодействия с ядрами хлора! Эти нейтрино также проникают через вещество, практически не взаимодействуя с ним, даже если речь идет о большом количестве хлора. Однако атомы хлора все же взаимодействуют, хотя и очень редко, с пролетающими нейтрино. На этом основан уже упомянутый эксперимент Девиса.
Нейтринный эксперимент Раймонда Девиса
Оказалось, что можно построить детектор для солнечных нейтрино. К сожалению, этот детектор позволяет фиксировать только те нейтрино, которые возникают в результате побочной реакции превращения бериллия в бор. Эта реакция несущественна для астрофизических процессов в недрах звезд. Такой детектор не позволяет увидеть нейтрино, возникающие в результате чрезвычайно важных для Солнца (а значит, и для нас) реакций водородного цикла. Но если наша модель Солнца правильна, то она будет предсказывать и количество высокоэнергетических нейтрино.
Девис задумал такой эксперимент. В большой контейнер помещается 390000 литров перхлорэтилена. Этот контейнер помещен на глубине 1500 метров под землей и дополнительно защищен толстым слоем воды. Такая защита позволяет исключить нежелательные побочные ядерные реакции. Перхлорэтилен представляет собой жидкость, которая применяется главным образом при химической чистке одежды и близка по свойствам к хорошо известному нам четырех-хлористому углероду. Каждая молекула этого вещества содержит четыре атома хлора, среди которых иногда встречается и чувствительный к нейтрино изотоп Сl37. Использование перхлорэтилена является наиболее дешевой и удобной возможностью сконцентрировать в небольшом объеме много атомов хлора. Эти атомы облучаются в каждый момент времени нейтрино, прилетающими к нам с Солнца. При этом почти ничего не происходит. Многочисленные нейтрино с низкой энергией, которые возникают в результате реакций водородного цикла, проходят через контейнер с перхлорэтиленом, не взаимодействуя с хлором. Однако можно обнаружить нейтрино с высокими энергиями, которые образуются при радиоактивном распаде изотопа бора. Если количество нейтрино высоких энергий правильно оценивается астрофизической моделью Солнца, то в контейнере каждый день в среднем один атом хлора под воздействием солнечного нейтрино будет превращаться в атом аргона.
Чем дольше мы будем ждать, тем больше образуется атомов аргона. Но через 35 дней аргон вновь распадается с образованием хлора. Если перхлорэтилен долго подвергается воздействию потока солнечных нейтрино, то через некоторое время устанавливается своеобразное равновесие: за определенный промежуток времени возникает и распадается в среднем одно и то же количество атомов аргона. К сожалению, концентрация атомов аргона, возникающих в таком контейнере, очень мала. Если наша модель процессов на Солнце правильна, то во всем контейнере будет находиться всего около 35 атомов аргона. Эти атомы нужно отыскать и подсчитать.