Шрифт:
Вместо недостачи выручка возросла бы на 1 доллар!
В действиях продавца не было злого умысла, но, как показывает арифметика, он добросовестно заблуждался: число пластинок в наборе и цены нельзя усреднять так, как это предлагал делать он. Допущенную им ошибку можно проанализировать алгебраически, но, для того чтобы убедить вас в недопустимости подобного усреднения, достаточно одного наглядного примера.
Предположим, что у владельца салона по продаж же автомашин имеется 6 «роллс-ройсов» и 6 — «фольксвагенов». Он просит 100000 долларов за 2 «роллс-ройса» и 50 000 долларов за 6 «фольксвагенов».
От продажи всех 12 машин владелец салона выручил бы 350 000 долларов. В среднем на 1 сделку приходятся 4 машины, а средняя выручка от 2 сделок составляет 75 000 долларов. Если бы владелец салона вздумал продавать все машины партиями по 4 машины за 75 000 долларов, то, распродав все 12 машин, он выручил бы только 225 000 долларов. Кроме того, покупатель заведомо предпочел бы выложить 75 000 долларов за 4 «роллс-ройса», оставив владельцу 8 «фольксвагенов» с явно завышенной ценой. Вот, пожалуй, и все, что мы хотели бы сказать по поводу ошибки продавца граммпластинок.
Начертите на листе бумаги эту матрицу 4х4 и перенумеруйте ее клетки числами от 1 до 16. Как вы сейчас убедитесь, я умею читать ваши мысли.
Обведите кружком любое число в матрице по своему усмотрению.
На рисунке обведено число 7, но вы можете выбрать другое число. Вычеркните все числа, которые стоят в одном столбце и в одной строке с обведенным числом.
Обведите кружком любое из невычеркнутых чисел и вычеркните числа, стоящие с ним в одной строке и в одном столбце. Обведите кружком любое из оставшихся чисел и вычеркните те числа, которые стоят с ним в одной строке в в одном столбце. Наконец обведите кружком единственное оставшееся число.
Если вы все сделали правильно, то ваша матрица выглядит примерно так, как показано на рисунке. Сложите числа, обведенные кружками. Как вы их выбирали, мне не известно.
Готово? А теперь я назову вам их сумму. У вас получилось число… минуточку!.. 34. Правильно? Как я отгадал» сколько у вас получилось? Может быть, я действительно умею читать ваши мысли?
Почему начерченная нами матрица заставляет вас всегда выбирать четыре числа, дающие в сумме 34? Секрет этой матрицы прост и изящен. Над каждым столбцом матрицы 4х4 выпишем числа 1, 2, 3, 4, а слева от каждой строки выпишем числа 0, 4, 8, 12;
Эти 8 чисел называются генераторами, или образующими, магической матрицы. В каждую клетку впишем число, равное сумме двух генераторов, стоящих у той строки и того столбца, на пересечении которых расположена клетка. Вписав все числа, мы получим матрицу, клетки которой перенумерованы по порядку числами от 1 до 16:
Посмотрим, что произойдет, если мы выберем 4 числа в соответствии с описанной выше процедурой.
Она гарантирует, что никакие два обведенные кружками числа не окажутся в одной строке или в одном столбце, а поскольку каждое число в клетке равно сумме единственной и неповторимой пары образующих, то сумма четырех обведенных кружками чисел равна сумме 8 генераторов, которая, как нетрудно подсчитать, равна 34. Следовательно, сумма четырех выбранных чисел также должна быть равна 34.
Поняв, как устроена магическая матрица 4х4, вы без труда построите магическую матрицу любого порядка. Рассмотрим, например, приводимую ниже матрицу 6-го порядка с 12 генераторами. Они выбраны так, что числа в клетках матрицы кажутся случайными. Это еще более маскирует закон, по которому выписаны числа матрицы и придает ей еще большую таинственность.
Сумма генераторов равна 30. Как бы ни выбирали в этой матрице 6 чисел, из которых никакие 2 не стоят в одной строке и в одном столбце, их сумма неизменно будет равна 30. Разумеется, эту сумму мы можем устанавливать по желанию.
Вы можете построить, например, магическую матрицу 10х10 с суммой генераторов, равной любому числу, которое покажется вам интересным, например «номер» текущего года или число лет, исполняющихся вашему доброму знакомому. Можно ли построить магические матрицы с отрицательными числами в некоторых клетках? Разумеется, можно.