Вход/Регистрация
А ну-ка, догадайся!
вернуться

Гарднер Мартин

Шрифт:

Кардинальное число множества всех натуральных чисел (так называемого счетного множества) Кантор обозначил

0 (алеф-нуль). Множество всех четных чисел, так же как и множество всех нечетных чисел, имеет кардинальное число
0 . Следовательно,
0+
0=
0

Парадокс с гостиницей «Бесконечность» показывает, что в некотором смысле справедливо и равенство

0—
0=
0

Как необычна арифметика кардинальных чисел!

Бесконечное множество всех действительных чисел больше, чем множество целых чисел. Кантор считал, что оно имеет кардинальное число

1(альф-один) — первое трансфинитное число, которое больше чем
0 .

С помощью своего знаменитого «диагонального процесса» Кантор доказал, что множество всех действительных чисел невозможно поставить во взаимнооднозначное соответствие с множеством целых чисел.

Кроме того, Кантор установил взаимно-однозначное соответствие между множеством всех действительных чисел и множеством точек на любом отрезке прямой, на всей бесконечной прямой, множеством точек квадрата, плоскости, неограниченно простирающейся во все стороны, куба, бесконечного пространства, а также гиперкубов и пространств более высокой размерности.

Кантор доказал также, что кардинальное число 2

больше, чем
, то есть между множествами с кардинальными числами 2
и
невозможно установить взаимно-однозначное соответствие. Следовательно, лестница алефов продолжается вверх нескончаемо.

Математики говорят, что множество действительных чисел обладает «мощностью континуума», и обозначают его кардинальное число с. Кантор пытался доказать, что с =

1, но это ему так и не удалось.

Через много десятилетий работами Курта Гёделя и Пола Коэна было установлено, что аксиомы обычной теории множеств не позволяют решить вопрос, интересовавший Кантора. Современная теория множеств делится на канторовскую и неканторовскую.

Канторовская теория множеств предполагает, что с =

1. Неканторовская теория множеств считает, что между си
1заключено бесконечно много трансфинитных чисел.

Знаменитая «гипотеза континуума» (как стали называть предположение Кантора) была решена сравнительно недавно, когда Коэн и другие математики доказали, что она неразрешима. Аналогичная ситуация возникла в геометрии после того, как было доказано, что постулат Евклида о параллельных нельзя вывести из других аксиом евклидовой геометрии.

Этот постулат можно заменить другими, и в зависимости от того, какой постулат будет принят, геометрия делится на евклидову и неевклидову.

3. ГЕОМЕТРИЯ

Парадоксы о плоскости, пространстве и невозможных формах

Большинство людей понимает под геометрией евклидову геометрию на плоскости, то есть изучение свойств жестких плоских фигур. В этой главе мы будем понимать геометрию в более широком смысле — так, как се определил более века назад Феликс Клейн. Геометрия, по Клейну, занимается изучением свойств фигур в пространстве любого числа измерений, остающихся неизменными, или инвариантными, относительно любой заданной группы преобразований. Предложенная Клейном концепция геометрии оказалась наиболее плодотворной для унификации понятий в современной математике. В евклидовой планиметрии и стереометрии допустимые преобразования состоят из трансляций (перемещений с одного места на другое), зеркальных отражений, поворотов и сжатий или растяжений. Более глубокие преобразования приводят к аффинной геометрии, проективной геометрии, топологии и, наконец, теории множеств, в которой фигуру разрешается «рассыпать» на отдельные точки, с тем чтобы составить из них новую фигуру.

Швейцарский психолог Жан Пиаже считает, что дети постигают геометрические свойства в обратном порядке. Например, малышу легче понять различие между кучкой красных и кучкой синих шариков (теория множеств) или между замкнутой в кольцо и разомкнутой резиновой лентой (топология), чем отличить пятиугольник от шестиугольника (евклидова геометрия).

Топология — довольно необычный раздел геометрии, изучающая свойства фигур, инвариантные относительно непрерывных деформаций. Представьте себе, что фигура или тело изготовлены из резины. Вы можете как угодно изгибать, растягивать и сжимать ее. Запрещается только отрывать части и приклеивать их.

  • Читать дальше
  • 1
  • ...
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: