Вход/Регистрация
Энциклопедия лучших игр со словами и цифрами
вернуться

Нестерова Дарья Владимировна

Шрифт:

Подсказка: (A + C) + (B + D) = (A + D) + (B + C).

Ответ

Это числа – 6, 7, 9, 13. Поскольку (А + С) + (В + D) = (А + D) + (В + С), а из попарных сумм чисел 13, 15, 16, 20, 22 совпадают только 13 + 22 = 15 + 20 = 35, то А + В = 16, С + D = 19. Поскольку А и В одинаковой четности, то получаем систему двух уравнений с двумя неизвестными:

А + В = 16

|A – B| = 2.

Решая систему, находим два числа 7 и 9 (то есть А = 7, В = 9 или А = 9, В = 7). Далее легко находим два недостающих числа: 6 и 13.

Рыцари и лжецы

Условие

Путешественник приехал на остров, каждый из 100 жителей которого или лжец, который всегда обманывает, или рыцарь, который всегда говорит правду. При этом среди жителей острова есть хотя бы один лжец.

Лжецы решили лгать таким образом, чтобы каких бы 50 жителей путешественник не собирал вместе, присутствующие среди них лжецы всегда отвечали на вопрос о числе рыцарей среди собранных туземцев так, чтобы путешественник получал один и тот же набор из 50 ответов.

Какое наибольшее число рыцарей могло быть на острове?

...

Подсказка: набор ответов должен выглядеть правдоподобно.

Ответ

Решая эту головоломку, нужно рассуждать следующим образом: рыцарей на острове менее 50, иначе путешественник, выбрав всех рыцарей, получил бы 50 ответов «пятьдесят», а, выбрав одного лжеца и 49 рыцарей, услышал бы иной набор ответов.

Получается, что лжецов на острове не менее 50 человек.

Поскольку набор ответов должен выглядеть правдоподобно, в наборе ответов должен быть 1 ответ «один», 2 ответа «два», 3 ответа «три», …, 9 ответов «девять» и еще 5 неправдоподобных ответов. Из этого можно сделать вывод, что на острове может быть не больше 9 рыцарей.

Десант

Условие

В игре «Десант» две армии захватывают страну. Игроки ходят по очереди, каждым ходом занимая один из свободных городов.

Первый город захватывается с воздуха, а каждым следующим ходом можно захватить любой населенный пункт, соединенный дорогой с каким-либо городом, уже занятым этой армией.

...

Подсказка: вспомните строение ароматических углеводородов.

Если таких городов нет, армия прекращает боевые действия, и игрок считается проигравшим.

Постройте такую схему городов и дорог, чтобы игрок, который ходит вторым, смог захватить более половины всех городов, независимо от того, как будет действовать армия его соперника.

Ответ

Такая схема изображена на рисунке 48.

Рис. 48. Выигрышная для второго игрока схема городов и дорог

Пусть на кольце последовательно расположены точки А1, В2, А3, В1, А2, В3, причем от точек А1, А3, А2 отходят «ветки» с N городами в каждой.

Если первый игрок первым ходом занимает точку на «ветке», армия второго игрока должна занять соответствующую точку Аi.

Если первая армия первым ходом занимает точку Ai, то вторая – Bi.

Если первый игрок первым ходом занимает точку Bi, то второй – любую из точек Aj (j не равно i). Дальнейшие действия очевидны. Поскольку в конце игры вторая армия занимает хотя бы две точки Ai, первый игрок захватывает не более, чем N + 3 точек.

Поэтому доля городов, захваченных армией второго игрока, не менее (2N + 3)/(3N + 6) > 1/2.

В условии задачи вместо 1/2 можно взять любое число, меньшее 2/3 (в этом случае N надо выбирать достаточно большим).

Фокусники

Условие

Два фокусника показывают зрителям интересный фокус. Одному из присутствующих они дают колоду карточек с числами от 1 до 78, чтобы он перемешал ее, отобрал любые 40 карточек и отдал их первому фокуснику.

Тот выбирает из полученных карточек две и возвращает их зрителю.

...

Подсказка: попробуйте разбить карточки на группы.

Последний добавляет к ним одну карточку из своих 38 и, перемешав, отдает эти карточки второму фокуснику, который сразу же показывает, какая из карточек была добавлена в стопку зрителем.

Попробуйте разоблачить фокус.

Ответ

Фокусники любым образом разбивают 78 карточек на 39 групп по две карты и запоминают эту комбинацию. Какие бы 40 карточек зритель не отдал первому фокуснику, среди них обязательно окажутся две карточки из одной пары (поскольку пар всего 39).

Первый фокусник должен дать зрителю две карточки из одной пары. Тогда карта, добавленная зрителем, будет из другой пары, ее сможет определить второй фокусник.

Кладоискатели

Условие

Три кладоискателя – Илья, Дмитрий и Алексей – нашли шкатулку, в которой было 6 монет: 3 золотых и 3 серебряных. Кладоискатели перемешали все монеты и по очереди с завязанными глазами вытащили по 2 монеты, не сказав друг другу, кому какие монеты достались.

  • Читать дальше
  • 1
  • ...
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: