Шрифт:
Если проигрывает в третий раз, то в четвертый раз ставит 8 долларов, если проигрывает и в четвертый, то в пятый раз ставит 16 долларов.
По условию он не проигрывает 5 раз подряд, значит, играя таким образом до первого выигрыша, он заработает 1 доллар не более чем за 5 ставок. После этого он скажет «о’кей» и будет делать ставки так же, как и вначале.
Получается, что после 1000 «о’кей» Пьер выиграет 1000 долларов. Для этого ему потребуется сделать не более 5000 ставок.
Альпинист
Условие
Альпинист стоит на горе высотой 100 м. На вершине горы дерево, на высоте 50 м (посередине горы) – еще одно дерево.
У альпиниста есть только 75 м веревки и нож. Может ли он спуститься с горы?
Подсказка: альпинисту следует разрезать веревку на 2 куска по 50 и 25 м.
Ответ
Альпинисту нужно отрезать 25 м веревки, один конец привязать к дереву на вершине горы, а на другом сделать петлю, через которую следует пропустить оставшиеся 50 м веревки, сложенной вдвое: 25 + 50 ? 1/2 = 50, то есть ему как раз хватит веревки, чтобы добраться до дерева, расположенного на высоте 50 м.
Далее альпинисту необходимо вытянуть веревку из петли, привязать к дереву и спуститься вниз.
Можно ли «сотку» разделить на 9?
Условие
В следующих многозначных числах цифры заменены буквами (одинаковые цифры – одинаковыми буквами, а разные – разными). Оказалось, что слово «девяносто» делится на 90, а «девятка» – на 9.
Можно ли «сотку» разделить на 9?
Подсказка: воспользуйтесь признаком делимости на девять.
Ответ
Буква «о» равна нулю. Сумма восьми различных цифр д + е + в + я + н + о + с + т делится на 9. Поскольку сумма всех цифр 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 делится на 9, то сумма 2 оставшихся цифр а + к делится на 9. В этом случае слово «сотка» делится на 9 тогда, когда с + т делится на 9 (так как о = 0, а + к делится на 9).
С другой стороны, д + е + в + я + т + к + а делится на 9 (д + е + в + я + т делится на 9, н + с делится на 9, так как д + е + в + я + н + о + с + т делится на 9 и о = 0).
Из этого можно сделать вывод, что с + т не может делиться на 9, следовательно, слово «сотка» тоже на 9 не делится.
Клоуны
Условие
В шеренгу выстроено n клоунов. На голову каждого надевают колпак одного из цветов: красного, желтого или зеленого. Клоун, стоящий в шеренге n-м, видит всех остальных клоунов, n-1-й клоун видит n-2 клоунов, стоящих впереди, … 2-й клоун видит только первого, первый клоун не видит никого.
Цвет своего колпака клоун определить не может. Каждого клоуна по порядку, начиная с n-го, просят ответить, какого цвета у него колпак. Клоун обязан назвать один из 3 цветов.
Какое максимальное число клоунов может гарантированно угадать цвет своих колпаков? При этом клоуны перед опоросом могут договориться, но не могут заранее знать, какие колпаки на них наденут.
Подсказка: отвечая на вопрос о цвете своего колпака, клоуны могут подсказывать друг другу.
Ответ
Пронумеруем цвета числами от 0 до 2. Видя всех, кроме себя n-й клоун складывает числа, соответствующие цветам видимых им колпаков, и называет цвет, соответствующий остатку от деления полученной им суммы на 3.
n-1-й клоун слышит ответ n-го и видит всех остальных клоунов, кроме себя и n-го. Он также может сложить числа, соответствующие видимым им колпакам, и взять остаток от деления на 3.
Разность между ответом n-го клоуна и этим числом будет соответствовать цвету колпака на n-1-м клоуне, что даст ему возможность правильно назвать цвет своего колпака.
Таким же образом действует и n-2-й клоун, учитывая 2 предыдущих ответа. Получается, что все клоуны, кроме n-го, гарантированно узнают цвет своего колпака (n-й клоун не может узнать цвет своего колпака, так как его колпак никто не видит).
Бесконечные крестики-нолики
Условие
На бесконечной клетчатой бумаге двое играют в крестики-нолики. Один игрок ставит своим ходом 2 крестика (не обязательно рядом), а другой – 1 нолик.
Сможет ли играющий крестиками поставить 10 крестиков в ряд?
Подсказка: на первых этапах игры нужно стремиться ставить крестики далеко друг от друга.
Ответ