Вход/Регистрация
Приглашение в теорию чисел
вернуться

ОРЕ О.

Шрифт:

§ 3. Расписания соревнований

В качестве другого простого применения теории сравнений можно рассмотреть составление расписаний соревнований, проходящих по круговой системе, подобных тем, которые составляются во всех видах соревнований от шахмат до футбола.

Обозначим количество участников (или команд) через N. Если число N — нечетное, то в каждом туре соревнований невозможно разбить все команды на пары — каждый раз одна из команд будет свободна от игры. Мы можем обойти эту трудность, добавив фиктивную команду T0 и составляя расписание для (N + 1)-й команды, включая команду Т0. В каждом туре команда, которой выпадает играть с командой Т0, будет свободна от игры.

Из сказанного следует, что можно считать количество команд N четным числом. Каждой команде мы сопоставим число

х = 1, 2…, N—1, N.

Общее количество туров, которое должна сыграть каждая команда, равно N — 1.

Предположим теперь, что х принадлежит множеству {1, 2…, N-1}. (8.3.1)

В качестве противника команды х в r– м туре мы назначим команду с номером у, из множества (8.3.1), где число yr удовлетворяет сравнению

x + yr ≡ r (mod (N — 1)). (8.3.2)

Чтобы увидеть, что при этом разные команды х имеют разных противников, заметим, что сравнение

x + yr ≡ r ≡ x' + yr (mod (N — 1))

означает, что

x ≡ x' (mod (N — 1))

или х = x', так как эти числа принадлежат множеству (8.3.1).

Единственная сложность возникает в том случае, когда х = yr, и таким образом в формуле (8.3.2) получаем

2x ≡ r (mod (N — 1)). (8.3.3)

Существует лишь одно значение х во множестве (8.3.1), для которого выполняется это соотношение. Действительно, если

2x ≡ r ≡ 2x' (mod (N — 1)),

то отсюда следует, что

2(x — x') ≡ 0 (mod (N — 1)),

или

х = х' (mod (N — 1)),

так как N — 1 — нечетное число. Решение сравнения (8.3.3) на множестве (8.3.1) всегда существует, а именно:

x = r/2, если r — четное,

x = (r + N — 1) / 2, если r—нечетное.

С помощью соотношения (8.3.2) мы приписали в r– м туре для каждой команды х ее противника, за исключением номера х0, который удовлетворяет условию (8.3.3). Команда х0 в этом туре будет встречаться с командой, имеющей номер N.

Осталось показать, что в результате такого подбора любая команда в каждом туре r = 1, 2…, N играет с различным противником. Сначала мы удостоверимся в этом для команды с номером N, имеющей в некотором смысле особое положение. В r– м туре она играет с командой х0, определяемой из соотношения (8.3.3). Предположим, что s ≠ r; тогда в s– м туре N– я команда играет с командой, имеющей номер x'0, удовлетворяющий соотношению

2x'0 ≡ s (mod (N — 1)).

При этом не может случиться, что х0 = х', так как это привело бы к тому, что

2х0 = 2х'0 ≡ r ≡ s (mod (N — 1))

и, следовательно, r = s.

Теперь рассмотрим различных противников команды х, принадлежащей множеству (8.3.1). С командой, имеющей номер N, эта команда играет только один раз, а именно в туре r0, где r0 определяется из сравнения

2x ≡ r0 (mod(N — 1)).

Предположим теперь, что r ≠ r0 и s ≠ r0. Тогда противники команды х в r– м и s– м турах будут определяться из соотношения (8.3.2):

х + уr ≡ r (mod (N—1)) и х + ys = s (mod (N —1)). Вновь из равенства yr = ys будет следовать r = s, откуда мы делаем вывод, что yr ≠ ys.

  • Читать дальше
  • 1
  • ...
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: