Вход/Регистрация
Приглашение в теорию чисел
вернуться

ОРЕ О.

Шрифт:

3. Чтобы определить наибольшую степень числа 10, на которую делится число n = 12•3… n, мы должны сначала найти наибольшую степень числа 5, на которую оно делится. Каждое пятое число 5, 10, 15, 20, 25, 30 делится на 5, всего таких чисел, не превосходящих числа n, [n/5]. Однако некоторые из них делятся на вторую степень числа 5, а именно, 25, 50, 75, 100…; таких чисел существует [n/25]. Некоторые из них делятся на третью степень числа 5, т. е. на 125: 125, 250, 375; их существует [n/53] и т. д. Это показывает, что выражение для точной степени числа 5, делящей число n! таково:

[n/5] + [n/52] + [n/53] +… (*)

В этой сумме достаточно выписать лишь те члены, в которых у выражения в квадратных скобках числитель не меньше знаменателя.

Точно такие же рассуждения можно провести для нахождения соответствующей степени любого другого простого числа р. В частности, когда р = 2, получается выражение

[n/2] + [n/22] + [n/23] +…

Ясно, что это выражение не меньше, чем выражение (*), т. е. в числе n! каждому множителю 5 можно подобрать множитель 2. Таким образом, выражение (*) также дает и величину степени числа 10, делящей n! которая равна числу нулей, стоящих в конечной части записи числа.

Примеры. n = 10, [10/5] = 2, [10/52] = 0, поэтому 10! оканчивается двумя нулями;

n = 31, [31/5] = 6, [31/52] = 1, [31/53] = 0, поэтому 31! оканчивается 7 нулями.

Система задач 4.4.

1. К(360, 1970) = 70 920, К(30, 365) = 2190.

2. К(220, 284)= 15620, K(1184, 1210) = 716 320, К(2620, 2924) =1 915 220, К(5020, 5564) = 6 982 820.

Система задач 5.2.

1. m = 8, n = 1: (16, 63, 65), n = 3: (24, 55, 73), n = 5: (80, 39, 89), n = 7: (112, 15, 113),

m = 9, n = 2: (36, 77, 85), n = 4: (64, 65, 97), n = 8: (144, 17, 145),

m =10, n = 1: (20, 99, 101), n = 3: (60, 91, 109), n = 7: (140, 51, 149), n = 9: (180, 19, 181).

2. Нет. Если

2mn = 2m1n1, m2 — n2 = m12 — n12, m2 + n2 = m12 + n12,

то отсюда следовало бы, что

m2 = m12, n2 = n12 или m = m1, n = n1.

3. Если число с является величиной гипотенузы пифагорова треугольника, то произведение kс, где k — любое целое число, обладает теми же свойствами. Таким образом, достаточно рассмотреть лишь значения с ≤ 100, которые не имеют делителей и могут быть величиной гипотенузы. Соответствующие

[…]

Система задач 8.2.

2. Для с = 19 последние два члена в формуле (8.2.2) можно заменить числом 1, поскольку тогда [1/4 c] — 2c ≡ 1 (mod 7).

Система задач 8.3.

1. 1:2:3:4:5:6:7:8

7:6:5:8:3:2:1:4

8:7:6:5:4:3:2:1

2:1:7:6:8:4:3:5

3:8:1:7:6:5:4:2

4:3:2:1:7:8:5:6

5:4:8:2:1:7:8:3

6:5:4:3:2:1:8:7

2. Когда r = 2, исключительный случай попадает на х = 1, следовательно, 1 играет с 8, а 8 играет с 1.

Для других значений х = 2, 3…, 7

y ≡ 2 — х ≡ 9 — х (mod 7),

т. е. соответственно у = 7, 6…, 2.

  • Читать дальше
  • 1
  • ...
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: