Вход/Регистрация
Приглашение в теорию чисел
вернуться

ОРЕ О.

Шрифт:

3. Команда N — 1 играет с

y ≡ r — (N — 1) ≡ r (mod (N — 1))

в r– м туре. Команда N — 1 может быть исключительной командой, если

2(N— 1) ≡ (mod (N— 1)),

следовательно, r = N — 1 и тогда команда N — 1 играет с командой N.

4. Условие (8.3.2) симметрично относительно х и уr, когда х — обычная команда. Если х удовлетворяет условию (8.3.3), то эта команда играет с командой N и, по определению, команда N играет с командой х.

ЗАКЛЮЧЕНИЕ

Таково наше приглашение в теорию чисел. Если она заинтересовала вас и вы хотите познакомиться с ней поближе, то для этого следует прочесть какой-нибудь систематический курс теории чисел, например,

И. М. Виноградов. Основы теории чисел. — М: Наука, 1972.

Существует также ряд популярных книг, освещающих отдельные вопросы теории чисел. Из них мы рекомендуем вам следующие:

Н. Н. Воробьев. Признаки делимости. — М: Наука, 1980.

Л. А. Калужнин. Основная теорема арифметики. — М.: Наука, 1969.

В. Серпинский. О решении уравнений в целых числах. — М.: Физматгиз. 1963.

В. Серпинский. Что мы знаем и чего не знаем о простых числах. — М. — Л.: Физматгиз, 1961.

В. Серпинский. 250 задач по элементарной теории чисел. — М.: Просвещение, 1968.

А. Я. Хинчин. Три жемчужины теории чисел. — М.: Наука, 1979.

М. М. Постников. Теорема Ферма. — М.: Наука, 1978.

  • 1
  • ...
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: