Вход/Регистрация
Maple 9.5/10 в математике, физике и образовании
вернуться

Дьяконов Владимир Павлович

Шрифт:

Аппроксимацией в системах компьютерной математики обычно называют получение приближенных значений какого-либо выражения. Однако под аппроксимацией функциональных зависимостей подразумевается получение некоторой конкретной функции, вычисленные значения которой с некоторой точностью аналогичны аппроксимируемой зависимости. Обычно предпочитают найти одну зависимость, приближающую заданный ряд узловых точек. Часто для этого используют степенные многочлены — полиномы.

Здесь мы будем рассматривать такие виды аппроксимации, которые дают точные значения функции y(x) в узловых точках в пределах погрешности вычислений по умолчанию. Если аппроксимирующая зависимость выбирается из условия наименьшей среднеквадратической погрешности в узловых точках (метод наименьших квадратов), то мы имеем регрессию или приближение функций по методу наименьших квадратов.

5.6.2. Полиномиальная аппроксимация и интерполяция аналитических зависимостей

Рассмотрим основы полиномиальной аппроксимации (приближения) функциональных зависимостей. Пусть приближаемая функция φ(х) должна совпадать с исходной функцией f(х) в (n+1)-точке, то есть должно выполняться равенство: φ(хi)=f(хi)=fi, i = 0, …, n. В качестве приближающей функции примем алгебраический полином:

 

 (5.1)

Выбор конкретного значения n во многом определяется свойствами приближающей функции, требуемой точностью, а также выбором узлов интерполяции. В случае аналитической функциональной зависимости выбор степени полинома может быть любым и чаще всего определяется компромиссом между сложностью полинома, скоростью его вычисления и погрешностью. В качестве критерия согласия принимается условия совпадения функций f и q в узловых точках:

f(хi) = Рn(хi), (i=0, 1, … n). (5.2)

Полином Рn(х) удовлетворяющий данному условию будет интерполяционным полиномом.

Для задачи интерполирования в интервале [a, b] выбираются значения аргументов а≤х0<x1<…<хn≤b, которые соответствуют значениям fi=f(хi) (i=0, 1, ..., n) функции f. Для этой функции будет существовать и притом единственный полином степени не выше n, который принимает в узлах х, заданные значения fi. Для нахождения этого полинома решается система алгебраических уравнений

а0хtn +a1 хtn-1 + ... +аn = fi, (i=0, 1, ..., n).

Подставив полученные значения a_k в равенство (5.1) можно получить обобщенную форму представления интерполяционного полинома

 

(5.3)

Получив интерполяционный полином (5.3), необходимо выяснить, насколько близко он приближается к исходной функции в других точках отрезка [a, b]. Обычно для этого строится график f(x) и Рn(х) и график их разности, т. е. абсолютной погрешности. Последняя определяется выражением:

 

(5.4)

Вопреки существующему мнению о быстрой потери точности полиномиальной аппроксимации при n>(5–7) погрешность ее быстро уменьшается при увеличении n. Но это только при условии, что все вычисления выполняются точно! При выборе метода приближения необходимо обеспечить по возможности более высокую точность приближения и одновременно простоту построения φ(х) по имеющейся информации о приближаемой функции f(х).

5.6.3. Интерполяционный метод Лагранжа.

При решении практических задач часто используют специальные виды интерполяционных полиномов, которые упрощают некоторые вычислительные процедуры. Данный метод предполагает введение вспомогательного полинома li(х) степени n. Полином li(х) в точке х, должен быть равен 1, а в остальных точках отрезка интерполяции должен обращаться в нуль.

Удовлетворяющий этому полином может быть представлен в виде:

 

(5.5)

Это выражение известно как интерполяционный полином Лагранжа. Важным достоинством ее является то, что число арифметических операций, необходимых для построения полинома Лагранжа, пропорционально n² и является наименьшим для всех форм записи. Данная форма интерполяционного полинома применима как для равноотстоящих, так и для неравноотстоящих узлов. Достоинством является и то, что интерполяционный полином Лагранжа удобен, когда значения функций меняется, а узлы интерполяции неизменны, что имеет место во многих экспериментальных исследованиях. Рекомендуется использовать запись интерполяционного полинома в форме Лагранжа при теоретических исследованиях при изучении вопроса сходимости Ln(f, х) к f при n→∞.

К недостаткам этой формы записи можно отнести то, что с изменением числа узлов необходимо все вычисления проводить заново. Выражение (5.4) можно записать в более компактной форме:

 

(5.5)

Теоретически максимальную точность обеспечивает полином высокой степени. Однако на практике часто используется полином невысокой степени (линейная и квадратичная интерполяция) с увеличением степени интерполяционного полинома возрастают колебательные свойства полинома. Аппроксимация с помощью интерполяционного полинома Лагранжа является достаточно эффективной, когда интерполируются гладкие функции и число n является малым. В частности в математическом обеспечении компьютерных средств имеется стандартные подпрограммы аппроксимации, в которых реализована формула Лагранжа.

  • Читать дальше
  • 1
  • ...
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: