Вход/Регистрация
Maple 9.5/10 в математике, физике и образовании
вернуться

Дьяконов Владимир Павлович

Шрифт:

Одним из наиболее распространенных интерполяционных сплайнов является кубический интерполяционный сплайн. Для вывода уравнения кубического интерполяционного сплайна можно воспользоваться его представлением в виде гибкой линейки, изогнутой таким образом, что она проходит через значения функции в узлах, то есть, является упругой рейкой в состоянии равновесия. Это его состояние описывается уравнением S'''(х)=0, где S'''(х) — четвертая производная. Из этого следует, что между каждой парой соседних узлов интерполяционная формула записывается в виде полинома третьей степени. Этот полином удобно представить следующим образом:

S(x) = аi + bi(x-xi-1) + с(х-хi-1)² + di(x–хi-1)³, xi-1≤х≤xi, i = 1, 2, ..., n.

Система Maple позволяет легко вычислять коэффициенты кубических полиномов. Метод сплайновой интерполяции дает хорошие результаты при интерполяции непрерывных функций с гладкими производными 1-ой и 2-ой степени. При этом кубическая сплайновая интерполяция, построенная по узлам fi=f(хi), i=0,1,…,n, будет иметь минимум кривизны по сравнению с любой интерполяционной функцией, имеющей непрерывные первую и вторую производные. Выполнение сплайн-интерполяции функций с резким изменением производных дает, как правило, большие ошибки. Сплайны более высоких порядков, чем третий, используется редко, так как при вычислении большого числа коэффициентов может накапливаться ошибка, приводящая к значительным погрешностям.

По сравнению с другими математическими конструкциями сплайны обладают следующими преимуществами: они обладают лучшими аппроксимирующими свойствами, что при равных информационных затратах дает большую точность или равную точность при менее информационных исходных данных. Для увеличения точности часто уменьшают величину шага интерполяции, что увеличивает число узлов. В случае интерполяционных полиномов это связано с возрастанием их степени, что имеет недостатки. Степень же сплайна не изменяется при увеличении количество узлов интерполяции. Это принципиальный момент теории сплайнов.

5.6.8. Рациональная интерполяция и аппроксимация

Большую точность приближения по сравнению полиномиальным приближением можно получить, если исходную функцию заменить, используя рациональную интерполяцию при которой аппроксимирующая функция ищется как отношение двух полиномов. Наиболее важным свойством рациональных функций является то, что ими можно приближать такие функции, которые принимают бесконечные значения для конечных значений аргумента и даже внутри интервала его изменения.

Итак, при задании f(х1), …, f(хn) приближение к f(x) ищется в виде

 

(5.11)

Коэффициенты аi, bi находятся из совокупности соотношений R(хj)=f(xj) (j=1,…,n), которые можно записать в виде

Данное уравнение образует систему n линейных уравнений относительно n+1 неизвестных. Такая система всегда имеет нетривиальное решение.

Функция R(x) может быть записана в явном виде в случае n нечетное, если р=q, и n четное, если р-q=1. Для записи функции R(x) в явном виде следует вычислять так называемые обратные разделенные разности, определяемые условиями

и рекуррентным соотношением

Интерполирование функций рациональными выражениями обычно рассматривают на основе аппарата цепных дробей. Тогда интерполирующая рациональная функция записывается в виде цепной дроби

Использование рациональной интерполяции часто целесообразнее интерполяции полиномами в случае функций с резкими изменениями характера поведения или особенностями производных в точках.

5.6.9. Метод наименьших квадратов (МНК)

При обработке экспериментальных данных, полученных с некоторой погрешностью, интерполяция становиться неразумной. В этом случае целесообразно строить приближающую функцию таким образом, чтобы сгладить влияние погрешности измерения и числа точек эксперимента. Такое сглаживание реализуется при построении приближающей функции по методу наименьших квадратов.

Рассмотрим совокупность значений таблично заданной функции fi в узлах хi при i=0,1,…,n. Предположим, что приближающаяся функция F(x) в точках х1, х2, …, хn имеет значения

. Будем рассматривать совокупность значений функции f(x) и функции F(x) как координаты двух точек n-мерного пространства. С учетом этого задача приближения функции может быть определена другим образом: найти такую функцию F(x) заданного вида, чтобы расстояние между точками M(f1, f2, …, fn) и
было наименьшим. Воспользовавшись метрикой евклидова пространства, приходим к требованию, чтобы величина

была наименьшей, что соответствует следующему:

 

(5.12)

то есть сумма квадратов должна быть наименьшей. Задачу приближения функции f(х) теперь можно формулировать иначе. Для функция f(х), заданной таблично, необходимо найти функцию F(x) определенного вида так, чтобы сумма квадратов (5.12) была наименьшей.

Выбор класса приближающихся функций определяется характером поведения точечного графика функции f. Это могут быть линейная зависимость, любые элементарные функции и т.д.

  • Читать дальше
  • 1
  • ...
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: