Вход/Регистрация
Maple 9.5/10 в математике, физике и образовании
вернуться

Дьяконов Владимир Павлович

Шрифт:

> MI:=proc(f::procedure)

> (х->х)-eval(f)/D(eval(f));

> end;

MI := proc(f::procedure) (x→x) -eval(f)/D(eval(f)) end proc

> g:=x->x-cos(x);

g := x→x - cos(x)

> SI:=MI(g);

> x0:=0.1;

x0:=.1

> to 6 do x0:=SI(x0) od;

x0:= .9137633858
x0:= .7446642419
x0:= .7390919660
x0:= .7390851333
x0:= .7390851332
x0:= .7390851332

Вообще говоря, в программных процедурах можно использовать любые операторы и функции, присущие Maple-языку, в том числе и те, которые реализуют символьные вычисления. Это открывает широкий простор для разработки новых процедур и функций, обеспечивающих выполнение символьных операций.

10.6.2. Вычисление интеграла по известной формуле

Рассмотрим следующий пример (файл р9):

> Int(e^x*x^n,x)=int(e^x*x^n,x);

∫exxndх = -(-1)(-n)ln(e)(-1-n)(хn(-1)nln(е)nnГ(n)(-х ln(е))(-n) – хn(-1)n ln(е)n е(хln(e))– хn(-1)nln(е)nn(-х ln(е))(-n)Г(n, -x ln(е)))

Ранние версии системы Maple не брали этот интеграл, поскольку он не имеет аналитического представления через обычные функции. Maple блестяще вычисляет этот «крепкий орешек», но полученное выражение довольно сложно.

Из математики известно, что такой интеграл может быть представлен в следующем виде:

Используя эту формулу, мы можем создать простую процедуру для численного и аналитического вычисления данного интеграла.

> IntExpMonomial:=proc(n::anything,х::name)

local i;

n!*exp(x)*sum(((-1)^(n-i)*х^i)/i!,i=0..n);

end;

 IntExpMonomial := proc(n::anything, x::name)

 local i;

n! × exp(x) × sum((-1)^(n-i) × x^i/i!,i=-..n)

 end proc

Проверим ее в работе:

> IntExpMonomial(3,х);

> IntExpMonomial(5,x);

> IntExpMonomial(n, x);

Результат в аналитическом виде довольно прост для данного интеграла с конкретным значением n. Более того, мы получили несколько иной результат и для n в общем случае. Но точен ли он? Для ответа на этот вопрос продифференцируем полученное выражение:

> diff(%,х);

Результат дифференцирования выглядит куда сложнее, чем вычисленный интеграл. Однако с помощью функции simplify в Maple 9 он упрощается к подынтегральной функции:

> simplify(%);

еx хn

Maple 9.5 выдал более замысловатое выражение:

(-1)n еx (-x)n

Это говорит о том, что задача вычисления заданного интеграла в аналитической форме действительно решена. А что касается громоздкости результатов, так ведь системы, подобные Maple, для того и созданы, чтобы облегчить нам работу с громоздкими вычислениями — в том числе аналитическими.

10.6.3. Вложенные процедуры и интегрирование по частям

Теперь мы подошли к важному моменту, о котором читатель наверняка уже давно догадался — в составляемых пользователям процедурах можно использовать ранее составленные им (или кем-то еще) другие процедуры! Таким образом, Maple-язык позволяет реализовать процедуры, вложенные друг в друга.

Для иллюстрации применения вложенных процедур рассмотрим операцию интегрирования по частям. Пусть нам надо вычислить интеграл

  • Читать дальше
  • 1
  • ...
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: