Вход/Регистрация
Maple 9.5/10 в математике, физике и образовании
вернуться

Дьяконов Владимир Павлович

Шрифт:

> [sech(1.), csch(1.), coth(1.)];

[6480542737, .8509181282, 1.313035286]

На рис. 3.4 сверху представлены графики гиперболического синуса, косинуса и тангенса. По ним можно судить о поведении этих функций.

Рис. 3.4. Графики основных гиперболических и обратных гиперболических функций

В отличие от тригонометрических функций, гиперболические функции не являются периодическими. Функция гиперболического тангенса имеет симметричную кривую с характерными ограничениями. Поэтому она широко используется для моделирования передаточных характеристик нелинейных систем с ограничением выходного параметра при больших значениях входного параметра.

С помощью функции преобразования convert(f, ехр) можно перевести гиперболические функции в экспоненциальную форму:

> convert(sinh(х),ехр);

> convert(tan(х),ехр);

3.2.11. Обратные гиперболические функции и их применение

К обратным гиперболическим функциям относятся: arcsinh — гиперболический арксинус; arccosh — гиперболический арккосинус; arctanh — гиперболический арктангенс; arcsech — гиперболический арксеканс: arccsch — гиперболический арккосеканс: arccoth — гиперболический арккотангенс. Примеры применения:

> [arcsinh(1.),arccosh(1.), arctanh(1.)];

[.8813735870, 0., Float(∞) + Float(undefined)I]

Графики обратных гиперболических синуса, косинуса и тангенса представлены на рис. 3.4 снизу. С помощью функции преобразования convert(f, ln) можно перевести гиперболические функции в логарифмическую форму:

> сonvert(arcsin(х), ln);

> convert(arctan(х), ln);

3.2.12. Вычисление степенных и логарифмических функций

К степенным и логарифмическим относятся следующие функции системы Maple: ехр — экспоненциальная функция; ilog10 — целочисленный логарифм по основанию 10 (возвращает целую часть от логарифма по основанию 10); ilog — целочисленный логарифм (библиотечная функция, возвращающая целую часть от натурального логарифма); ln — натуральный логарифм; log — логарифм по заданному основанию (библиотечная функция); log10 — логарифм по основанию 10; sqrt — квадратный корень.

Примеры вычисления этих функций (файл calcfim):

> х:=2;

х:=2

> [ехр(х),ln(х),log(х),log10(х)];

> х:=2.0;

х:= 2.0

> [ехр(х),ln(х),log(х),log10(х)];

[7.389056099,.6931471806,.6931471806,.3010299957]

> ilog[2](100);

6

> readlib(log10);

proc(x) ... end proc

> log10(10000.);

4.000000000

> evalc(sqrt(2+3*I));

> sqrt(99+1);

13

Графики ряда описанных выше функций показаны на рис. 3.5. Они также получены с применением средств Maple 9.5.

Рис. 3.5. Графики ряда степенных и логарифмических функций

На рис. 3.5 показаны также графики синусоиды с экспоненциально падающей и нарастающей амплитудой. Строго говоря, называть представленные функции синусоидами математически не корректно.

Многие функции этой группы обычно определены для положительных значений аргумента. Однако введение комплексных чисел позволяет вычислять такие функции и для отрицательных значений аргумента. Несколько интересных примеров этого представлено ниже (файл calcfun):

> restart:sqrt(-4);

2I

> simplify( sqrt(х^2));

csgn(x)x

> ln( -1 );

πI

> simplify(log(exp(x)));

ln(ex)

> assume(x,positive);simplify(log(exp(x)));

x~

Обратите внимание на то, что в предпоследнем примере Maple отказалась вычислить «очевидное» значение выражения, но сделала это после придания х статуса предполагаемой переменной с только положительными значения.

3.2.13. Применение элементарных функция для моделирования сигналов

Системы компьютерной математики часто используются для моделирования сигналов и устройств их обработки и преобразования (см. пример в разделе 3.2.5). Рисунок 3.6 показывает построение нескольких функций, полученных с помощью комбинаций элементарных функций, включая тригонометрические функции. Такие комбинации позволяют получать периодические функции, моделирующие сигналы стандартного вида: в виде напряжения на выходе двухполупериодного выпрямителя, симметричных прямоугольных колебаний (меандр), пилообразных и треугольных импульсов, треугольных импульсов со скругленной вершиной.

  • Читать дальше
  • 1
  • ...
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: