Дьяконов Владимир Павлович
Шрифт:
Следующие примеры показывают вывод определений функций Бесселя:
В следующем примере выводится информация о представлении функции синуса в виде ряда, представленного суммой его членов:
Еще один пример показывает вывод интегрального представления синусного интеграла Френеля:
Представленные примеры дают представление лишь о малой части возможностей консультанта по функциям. С этим мощным средством получения информации о функциях можно дополнительно познакомиться по справке о нем, содержащей множество интересных примеров применения консультанта по функциям.
3.4. Работа с функциями пакетов расширения Maple
3.4.1. Работа с функциями пакета комбинаторики combinat
Функции комбинаторики достаточно известны из обычного курса математики. Но они применяются сравнительно редко. Поэтому они не включены в состав ядра системы, но имеются в пакете расширения combinat. При вызове пакета
выводится список имен его функций. Ввиду важности функций комбинаторики для некоторых специальных вычислений приведем их полные определения:
• Chi(x) — гиперболический косинусный интеграл;
• bell(n) — возвращает числа из решения уравнения ехр(ехр(х)-1)= sum(bell(n)/n!*x^n, n=0..infinity), причем для вычислений используется рекуррентное соотношение bell(n+1) = (bell(n)+1)^n;
• binomial(n, r) — возвращает биноминальные коэффициенты, причем, если n и r — целые числа, удовлетворяющие условию 0<=r<=n, то функция возвращает C(n,r)=n!/(r!(n-r)!), а в общем случае C(n, r) = limit(GAMMA(N+1)/ GAMMA(R+1)/GAMMA(N-R+1),R=r,N=n).
• composition(n, k) — возвращает списки композиций для целых неотрицательных n и k;
• fibonacci(n) — возвращает числа Фибоначчи, вычисляемые по рекуррентной формуле F(n) = F(n–1)+F(n–2), где F(0) = 0 и F(1)=1;
• fibonacci(n, х) —возвращает значение полинома Фибоначчи F(n, х) = х F(n–1, х) + F(n–2, х), где F(0, х)–0 и F(1, а)=1, при этом F(n)=F(n, 1);
• firstpart(n) — возвращает первый член последовательности из наборов чисел, сумма которых равна n (в оригинале каноническую последовательность);
• nextpart(1) — возвращает следующую часть указанной выше последовательности;
• lastpart(n) — возвращает последний член последовательности, указанной для функции firstpart;
• prevpart(1) — возвращает предпоследнюю часть канонической последовательности ряда;
• conjpart(1) — возвращает объединенный раздел в канонической последовательности ряда;
• graycode(n) — возвращает список кодов Грея для n-битовых чисел;
• multinomial(n, k1, k2,…, km) — возвращает мультиномиальные коэффициенты;
• numbcomb(n) и numbcomb(n, m) — возвращает число комбинаций;
• numbcomp(n, k) — возвращает число различных упорядоченных наборов из к натуральных чисел, сумма которых равна n;
• numbpart(n) — возвращает список всех возможных сумм, дающих n;
• permute(n) и permute(n, r) — возвращает numbperm(n, r) = nops(permute(n, r));