Вход/Регистрация
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
вернуться

Дербишир Джон

Шрифт:

Глава 17. Немного алгебры

I.

Этой книге следовало бы содержать куда больше алгебры, чем в конце концов в ней оказалось. Мы уделяли основное внимание Бернхарду Риману и его работе о простых числах и дзета-функции. Эта работа относится к теории чисел и анализу, и поэтому в нашем рассказе преобладали именно эти темы. Однако современная математика, как уже отмечалось, стала довольно алгебраической. В данной главе читателю предлагаются алгебраические сведения, которые могут потребоваться для понимания двух важных подходов к Гипотезе Римана.

Как и главы 7 и 15, эта глава состоит из двух частей. В разделах II и III обсуждаются основы теории полей, а оставшаяся часть главы посвящена теории операторов. Теория полей важна потому, что она ужепозволила доказать нечто, сильно напоминающее Гипотезу Римана. Многие исследователи полагают, что теория полей предлагает наиболее многообещающее направление исследования исходной, классической Гипотезы Римана. Теория операторов приобрела важность после знаменательных и даже романтических событий, о которых будет рассказано в следующей главе. [157] Но сначала о теории полей.

157

Например, С. Дж. Паттерсон в своей книге «Введение в теорию дзета-функции Римана» в параграфе 5.11 пишет: «Наиболее убедительные аргументы, которые имеются к настоящему моменту в пользу справедливости Гипотезы Римана, — это справедливость аналогичного утверждения для дзета-функций, связанных с кривыми над конечными полями. Формальное сходство настолько впечатляюще, что трудно представить себе, как оно могло бы не приводить к еще более далеко идущим совпадениям» (курсив мой. — Дж. Д.).

II.

B математике слово «поле» имеет весьма конкретный смысл. Множество элементов образует поле, если эти элементы можно складывать, вычитать, перемножать и делить в согласии с обычными правилами арифметики — например, с правилом ax(b + c) = ab + ac.Результаты всех этих действий должны оставаться в поле.

Например, Nне является полем. Если попробовать из 7 вычесть 12, то получится результат, не лежащий в N. Аналогично обстоит дело и с Z— если поделить 12 на 7, то ответ не будет лежать в Z. Это не поля.

Но Q, Rи C— поля. Если складывать, вычитать, перемножать или делить друг на друга два рациональных числа, то получится другое рациональное число. То же самое с вещественными и комплексными числами. Они дают нам три примера поля. Ясно, что каждое из этих полей содержит бесконечное число элементов.

Несложно построить и другие бесконечные поля. Рассмотрим семейство всех чисел вида а + b2, где aи b —рациональные числа. Здесь bили равно нулю, или нет. Если bне равно нулю, то, поскольку число 2 не является рациональным, число а + b2 также не рациональное. Следовательно, это семейство содержит все рациональные числа (при нулевом b) и тучу весьма специальных иррациональных. Такие числа образуют поле. Сложение числа а + b2 с числом c + d2 дает (a + c) + (b + d)2, их вычитание дает (a - c) + (b - d)2, результат умножения есть (ac + 2 bd) + (ad + bc)2, а деление с использованием приема, подобного тому, который применяется при делении комплексных чисел, приводит к (ac - 2bd)/(c 2– 2d 2) + ((bc - ad)/(c 2– 2d 2))2. Поскольку aи bмогут быть вообще любыми рациональными числами, в этом поле бесконечно много элементов.

Поля не обязательно бесконечны. Простейшее из всех полей содержит всего два элемента, 0 и 1. Таблица сложения имеет вид 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0. Таблица вычитания такова: 0 - 0 = 0, 0 - 1 = 1, 1 - 0 = 1, 1 - 1 = 0. (Можно заметить, что получающиеся результаты таковы же, как для сложения. В данном поле любой знак минус можно спокойно заменить знаком плюс!) Таблица умножения: 0x0 = 0, 0x1 = 0, 1x0 = 0, 1x1 = 1. Таблица деления: 0:1 = 0, 1:1 = 1, а деление на нуль запрещено. (Делить на нуль нельзя никогда.) Это абсолютно нормальное, а вовсе не тривиальное поле, и мы очень скоро не преминем им как следует воспользоваться. Математики называют его полем F 2.

На самом деле конечное поле можно построить для любого простого числа р и даже для любой степени любого простого числа. Если p— простое число, то имеется конечное поле из pэлементов, поле из p 2элементов, поле из p 3элементов и т.д. Более того, мы только что перечислили все возможные конечные поля. Их можно организовать в список: F 2, F 4, F 8, …, F 3, F 9, F 27, …, F 5, F 25, F 125, …; выписав их все, мы тем самым перечислим все возможности построения конечных полей.

Ошибкой было бы считать (как это порой делают начинающие), что конечные поля представляют собой просто переформулировку арифметики циферблата, описанной в главе 6.viii. Это верно только для полей, содержащих простое число элементов. А вот арифметика других конечных полей устроена более тонко. На рисунке 17.1, например, представлена арифметика циферблата — сложение и умножение — для циферблата с четырьмя отметками (т.е. 0, 1, 2 и 3). Эта система чисел и правил интересна и полезна, но она не является полем, поскольку нельзя разделить 1 ни на 3, ни на 2. (Если бы можно было разделить 1 на 2, то уравнение 1 = 2x xимело бы решение. А у него решения нет.) Математики называют это кольцом, что не лишено основания, коль скоро речь идет о циферблате. В кольце можно складывать, вычитать и умножать, но не всегда можно делить.

+ 0 1 2 3 x 0 1 2 3
0 0 1 2 3 0 0 0 0 0
1 1 2 3 0 1 0 1 2 3
2 2 3 0 1 2 0 2 0 2
3 3 0 1 2 3 0 3 2 1
  • Читать дальше
  • 1
  • ...
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: