Вход/Регистрация
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
вернуться

Дербишир Джон

Шрифт:

Как уже упоминалось в предыдущем разделе, для всякой степени p Nпростого числа имеется конечное поле. Мы также видели, как конечное поле можно использовать в качестве основы для построения других полей, в том числе бесконечных. Оказывается, что если начать с конечного поля, то имеется способ таким образом построить эти поля-«расширения», что с ними будет связана некоторая дзета-функция. Под «некоторой дзета-функцией» здесь понимается функция комплексного аргумента, определенная над полем комплексных чисел и по целому ряду своих свойств необъяснимым образом напоминающая дзета-функцию Римана. Например, эти аналоги римановой дзета-функции снабжены своим собственным Золотым Ключом — своей собственной эйлеровой формулой произведения, а также своей собственной Гипотезой Римана. [160]

160

Здесь (как и в ряде других случаев в этой книге и повсеместно в математике в целом) название — скажем, «Гипотеза Римана» или «формула Эйлера», — стандартно используемое в некотором устоявшемся контексте, смело применяется расширительно, причем иногда в контекстах, очень далеких от исходного и таких, о существовании которых ученый, давший свое имя названию, и не подозревал. Когда при этом хотят вернуться к исходной теореме, формуле, гипотезе и так далее, иногда используют эпитет «классическая». (Примеч. перев.)

В 1933 году работавшему в Магдебургском университете в Германии Хельмуту Хассе удалось для определенной категории полей доказать результат, аналогичный Гипотезе Римана. В 1942 году Андре Вейль [161] распространил это доказательство на гораздо более широкий класс объектов, а затем предположил — в знаменитых трех «гипотезах Вейля», — что подобные результаты должны иметь место для еще более широкого класса. В 1973 году бельгийский математик Пьер Делинь получил сенсационное достижение, принесшее ему Филдсовскую премию, — он доказал гипотезы Вейля, тем самым, по существу, завершив программу исследований, начало которой положил Артин.

161

Андре Вейль(Andre Weil), один из наиболее прославленных математиков XX века, был братом героини французского Сопротивления и мистического философа Симоны Вейль. Он учился у Адамара в Коллеж де Франс. Следует отличать его от Германа Вейля (Hermann Weyl). (Исчезновение всякой разницы в написании по-русски, очевидно, лишь усложняет задачу «отличать» — и эта проблема в самом деле присутствует в русских математических текстах. — Примеч. перев.)

Неизвестно, в какой степени методы, развитые для доказательства аналогов Гипотезы Римана, относящихся к столь замысловатым полям, пригодны для доказательства классической Гипотезы Римана. Но очень многие считают, что вполне пригодны, и данная область остается очень активным направлением в исследовании Гипотезы Римана.

Ведут ли эти исследования куда-нибудь? Это не ясно — по крайней мере, мне не ясно. По поводу существа дела обратимся снова ко второму абзацу в этом разделе, где говорилось, что с полями определенного вида связаны аналоги дзета-функции. Для классической дзета-функции — той, о которой говорится в исходной Гипотезе Римана и которой главным образом и посвящена данная книга, — полем такого вида будет Q, поле обычных рациональных чисел. По мере развития исследований в последние десятилетия выяснилось, что элементарное поле рациональных чисел Qв некотором смысле глубже и более своенравно, нежели «искусственно выведенные» поля, к которым применимы результаты Артина, Вейля и Делиня. Но с другой стороны, методы, развитые для обращения с этими «искусственными» полями, оказались достаточно мощными — Эндрю Уайлс использовал их для доказательства Последней теоремы Ферма!

IV.

Для понимания физической линии в исследовании Гипотезы Римана, генезис которой будет описан в разделе VI и которая открыла исследователям новые обширные территории, следует обратиться к другой алгебраической теме — теории операторов. Поэтому данный раздел, как и следующий, посвящен рассказу об операторах, рассматриваемых с точки зрения связанной с ними теории матриц.

В современной математике и физике матрицы вездесущи, и способность управляться с ними относится к числу основных математических навыков. Из-за ограничений в объеме мне придется спрямить историю, приведя лишь самое необходимое. В частности, я вообще обойду стороной вопрос о вырожденных матрицах, как если бы таких в природе не было. Это, должно быть, самое возмутительное упрощение во всей книге, и я приношу свои извинения математически подкованным читателям.

Матрица — это квадратная таблица из чисел, например

. Целые числа выбраны здесь исключительно для простоты. Числа, входящие в матрицу, могут быть рациональными, вещественными или даже комплексными. Данная конкретная матрица — это матрица 2x2. Матрицы могут быть любого размера, скажем, 3x3, 4x4, 120x120 и т.д. Они могут иметь даже бесконечный размер, хотя для бесконечных матриц правила и подвергаются некоторой модификации. Важная часть во всякой матрице — это ее главная диагональ, т.е. диагональ, ведущая из левого верхнего угла в правый нижний. В нашем примере на главной диагонали стоят элементы 5 и 6.

Если даны две матрицы одного и того же размера, то их можно складывать, вычитать, умножать и делить. Правила, по которым выполняются эти действия, не сразу очевидны. Например, если Aи B— две матрицы одного и того же размера, то, вообще говоря, не верно, что АxВ = ВxА.Правила обращения с матрицами несложно найти в любом обычном учебнике по алгебре, и нам нет нужды вдаваться в них. Достаточно сказать, что такие правила существуют и что имеется арифметика матриц, в целом напоминающая арифметику обычных чисел, только похитрее.

Нам же важно знать про матрицы следующее. Из всякой матрицы (NxN)можно извлечь многочлен N-й степени — полиномиальную функцию, составленную из различных степеней буквы x, вплоть до N-й степени. Боюсь, я не могу объяснить, как же найти этот многочлен для данной матрицы. Придется поверить мне, что он действительно существует и что имеется способ его построить. Этот многочлен называется характеристическим многочленомматрицы.

Характеристический многочлен для приведенной выше матрицы 2x2 равен x 2– 11 x+ 28. [162] При каких значениях xэтот многочлен равен нулю? Это все равно что спросить, каковы решения квадратного уравнения x 2– 11 x+ 28. По хорошо известной формуле (или, как оптимистически говаривал мой школьный учитель, «путем усмотрения») находим, что решения — это 4 и 7. Ну и правда, если подставить 4 вместо x, то значением многочлена будет 16 – 44 + 28, что в самом деле равно нулю. То же самое и с подстановкой числа 7: 49 – 77 + 28 тоже равно нулю.

162

Для получения более ясной картины читателю все же может быть полезна формула, по которой получается характеристический многочлен матрицы 2x2. Общий вид такой матрицы ( a b c d ). Ее характеристический многочлен равен ( a - x)x(d - x) - bc.Таким образом и получается x 2– 11 x+ 28. Далее автор рассматривает характеристические многочлены с точностью до общего ненулевого множителя. (Примеч. перев.)

  • Читать дальше
  • 1
  • ...
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: