Шрифт:
(4.04) Y = 1/(ABS(X - LOC)^ KURT + 1)
Мы можем добавить множитель в знаменателе, чтобы контролировать ширину, второй момент распределения. Характеристическая функция будет выглядеть следующим образом:
(4.5) Y = 1 / (ABS((X - LOC) * SCALE)^ KURT + 1),
где Y = ордината характеристической функции;
X = количество стандартных отклонений;
LOC = переменная, задающая расположение среднего значения, первый момент распределения;
Рисунок 4-4 LOC=0, SCALE =1, SKEW = 0, KURT = 3
Рисунок 4-5 LOG = 0, SCALE = 1, SKEW = О, KURT = 1
KURT = переменная, задающая эксцесс, четвертый момент распределения;
SCALE = переменная, задающая ширину, второй момент распределения.
Рисунки 4-6 и 4-7 иллюстрируют изменение параметра ширины. Действие этого параметра можно представить как движение горизонтальной оси вверх или вниз Когда ось сдвигается вверх (при уменьшении ширины), график расширяется (см рисунок 4-6), как будто мы смотрим на его верхнюю часть. На рисунке 4-7 показана обратная ситуация, когда горизонтальная ось сдвигается вниз и кривая распределения сжимается. Теперь у нас есть характеристическая функция распределения, с помощью которой мы контролируем три из четырех моментов распределения Сейчас распределение симметрично. Для этой функции нам необходимо добавить коэффициент асимметрии, третий момент распределения. Характеристическая функция тогда будет выглядеть следующим образом:
где С = показатель асимметрии, рассчитанный следующим образом:
Y = ордината характеристической функции;
Х= количество стандартных отклонений;
LOC= переменная, задающая расположение среднего значения, первый момент распределения;
KURT = переменная, задающая эксцесс,
четвертый момент распределения;
SCALE = переменная, задающая ширину, второй момент распределения;
SKEW= переменная, задающая асимметрию, третий момент распределения;
sign = функция знака, число 1 или -1. Знак Х рассчитывается как X/ ABS(X) для X, не равного 0. Если Х равно нулю, знак будет считаться положительным;
Рисунки 4-8 и 4-9 показывают действие переменной асимметрии на распределение. Отметим несколько важных особенностей параметров LOC, SCALE, SKEW и KURT. За исключением переменной LOC (которая выражена как число стандартных значений для смещения распределения), другие три
Рисунок 4-6 LOC=0, SCALE =0,5, SKEW = 0, KURT=2
Рисунок 4-7 LOC=0, SCALE = 2, SKEW = 0, KURT=2,
Рисунок 4-8 LOC=0, SCALE =1, SKEW =-0,5, KURT = 2.
Рисунок 4-9 LOG = 0, SCALE = 1, SKEW = +0,5, KURT = 2.
переменные являются безразмерными, то есть их значения являются числами, которые характеризуют форму распределения и относятся только к этому распределению. Значения параметров будут другими, если вы примените стандартные измерительные методы, детально описанные в разделе «Величины, описывающие распределения» главы 3. Например, если вы определите один из коэффициентов асимметрии Пирсона на наборе данных, он будет отличаться от значения переменной SKEW для распределений, рассматриваемых здесь. Значения четырех переменных уникальны для рассматриваемого распределения и имеют смысл только в данном контексте. Крайне важен интервал возможных значений этих переменных. Переменная SCALE всегда должна быть положительной, кроме того, она не ограничена сверху. То же самое верно для переменной KURT. На практике, однако, лучше использовать значения от 0,5 до 3, в крайнем случае, от 0,05 до 5. Вы можете использовать значения и за пределами этих крайних точек при условии, что они больше нуля.
Переменная LOC может быть положительной, отрицательной или нулем. Параметр SKEW должен быть больше или равен -1, и меньше или равен +1. Когда SKEW равен +1, вся правая сторона распределения (справа от пика) равна пику. Когда SKEW равен -1, пику равна вся левая сторона распределения. Интервалы значений переменных в общем виде таковы:
(4.08) - бесконечность < LOC < + бесконечность
(4.09) SCALE > 0
(4.10) -1<=SKEW<=+1
(4.11) KURT > О
Рисунки с 4-2 по 4-9 показывают, как легко изменяется распределение. Мы можем подогнать эти четыре параметра таким образом, чтобы получившееся в результате распределение было похоже на любое другое распределение.
Подгонка параметров распределения
Как и в процедуре, описанной в главе 3, по поиску оптимального f при нормальном распределении, мы должны преобразовать необработанные торговые данные в стандартные единицы. Сначала мы вычтем среднее из каждой сделки, а затем разделим полученное значение на стандартное отклонение. Далее мы будем работать с данными в стандартных единицах. После того как
мы приведем сделки к стандартным значениям, можно отсортировать их в порядке возрастания. На основе полученных данных мы сможем провести тест К-С. Нашей целью является поиск таких значений LOC, SCALE, SKEW и KURT, которые наилучшим образом подходят для фактического распределения сделок. Для определения «наилучшего приближения» мы полагаемся на тест К-С. Рассчитаем значения параметров, используя «метод грубой силы двадцатого века». Мы просчитаем каждую комбинацию для KURT от 3 до 0,5 с шагом -0,1 (мы можем также взять интервал от 0,5 до 3 с шагом 0,1, так как направление не имеет значения). Далее просчитаем каждую комбинацию для SCALE от 3 до 0,5 с шагом -0,1. Пока оставим LOC и SKEW равными 0. Таким образом, нам надо обработать следующие комбинации: