Вход/Регистрация
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
вернуться

РАЛЬФ ВИНС РАЛЬФ

Шрифт:

поэтому

Далее, мы можем рассчитать фактическое TWR:

(4.17) TWR= Среднее геометрическое^X,

где N= число сценариев;

TWR= относительный конечный капитал;

HPR= прибыль за период удержания позиции для сценария i;

А = результат сценария i;

Р.= вероятность сценария i;

W= наихудший результат среди всех сценариев N;

Х= число, характеризующее повторение этого сценария, когда мы инвестируем Х раз.

TWR, полученное из уравнения (4.14), является промежуточным значением для расчета среднего геометрического. После того как мы найдем среднее геометри­ческое, фактическое TWR можно получить с помощью уравнения (4.17).

Мы можем произвести расчеты по этим уравнениям следующим образом. Сначала выберем схему оптимизации, то есть способ поиска f, максимизирующего уравнение. Можно сделать это с помощью подбора Ют 0,01 до 1, используя метол итераций или параболическую интерполяцию. Затем мы должны определить наихудший возможный результат для всех рассматриваемых сценариев независимо от того, насколько малы вероятности подобных сценариев. В примере с корпорацией АБВ наихудшие ожидаемые потери — это -500 000 долларов. Теперь для каждого сценария мы должны сначала разделить наихудший возможный результат на отрицательное f. В примере с корпорацией АБВ мы собираемся просмотреть значения Ют 0,01 до 1. Начнем со значения f=0,01. Теперь, если мы разделим наихудший возможный результат рассматриваемых сценариев на отрицательное значение f, то получим:

– $500 000 / -0,01 = $50 000 000

Для каждого сценария разделим его результат на полученное только что зна­чение. Так как исход первого сценария является наихудшим с убытком 500 000 долларов, то:

– $500 000 / $50 000 000 =– 0,01

Теперь прибавим это значение к 1:

1 + (-0,01) = 0,99

Наконец, возведем полученный ответ в степень вероятности осуществления данного сценария (в нашем примере 0,1):

0,99^0,1=0,9989954713

Затем перейдем к следующему сценарию под названием «Кризис» с вероятнос­тью 0,2 проигрыша 200 000 долларов. Наш результат наихудшего случая все еще -$500 000. Значение f, с которым мы работаем, по-прежнему 0,01, поэтому чис­ло, на которое надо разделить результат этого сценария, составляет 50 000 000 долларов:

– $200 000/$50 000 000 = -0,004

Проведем дальнейшие вычисления для получения HPR:

1 + (-0,004) = 0,996 0,99^0,2 = 0,9991987169

Если мы рассмотрим остальные сценарии при тестируемом значении f=0,01, то найдем три значения HPR, соответствующие последним 3 сценариям:

Застой 1,0

Мир 1,004487689

Процветание 1,000990622

После того как найдены все HPR для данного значения f, необходимо перемно­жить полученные HPR:

0,9989954713*0,9991987169*1,0*1,004487689 * 1,000990622=1,003667853

Мы получили промежуточное TWR = 1,003667853. Следующим шагом будет воз­ведение этого значения в степень, равную единице, деленной на сумму вероятно­стей. Так как сумма вероятностей составляет 1, то, чтобы получить среднее геометрическое, TWR возведем в степень 1. Таким образом, среднее геометрическое равно в этом случае TWR, то есть 1,003667853. Если, однако, убрать ограничение. что каждый сценарий должен иметь уникальную вероятность, то можно получить сумму вероятностей больше 1. В таком случае, чтобы получить среднее геометри­ческое, надо возвести TWR в степень, равную единице, деленной на эту сумму вероятностей.

Ответ, полученный в нашем примере, является средним геометрическим. соответствующим значению f= 0,01. Теперь перейдем к значению f= 0,02 и по­вторим весь процесс, пока не найдем среднее геометрическое, соответствующее этому f. Мы будем продолжать, пока не дойдем до такого значения f, которое даст наивысшее среднее геометрическое.

В нашем примере наивысшее среднее геометрическое достигается при f=0,57 и равно 1,1106. Разделив возможный результат наихудшего сценария (-$500 000) на отрицательное оптимальное f, мы получим 877 192,35 доллара. Другими словами, если корпорации АБВ надо разместить на рынке новый продукт в этой далекой стране, следует инвестировать именно эту сумму. С течением времени и развитием событий, когда изменятся возможные исходы и вероятности, изменится также и сумма f. Чем чаще корпорация АБВ будет учитывать эти изменения, тем более правильными будут ее решения. Отметьте. что если корпорация АБВ инвестирует в этот проект меньше 877 192,35 доллара. тогда она находится левее пика кривой f. Это аналогично ситуации, когда у трейдера открыто слишком мало контрактов (по сравнению с оптимальным f). Если корпорация АБВ вкладывает в проект большую сумму, это аналогично ситуации, когда у трейдера открыто слишком много позиций.

Количество, рассмотренное здесь, является количеством денег, но это мо­гут быть не только деньги, и метод будет работать. Данный подход можно ис­пользовать для любого количественного решения в среде благоприятной нео­пределенности .

Если вы создадите различные сценарии для фондового рынка, оптимальное f. полученное с помощью этого метода, даст вам процент средств, которые надо в данный момент инвестировать в акции. Например, если f= 0,65, то 65% вашего баланса должно быть на рынке, а оставшиеся 35%, например, в деньгах. Этот под­ход даст вам наибольший геометрический рост капитала. Конечно, результат бу­дет зависеть от того, какие входные данные вы использовали в системе (сценарии. их вероятности осуществления, выигрыши и проигрыши, издержки). Все сказан­ное ранее об оптимальном f применимо здесь, и это означает также, что ожидае­мые проигрыши могут достигать 100%. Если вы осуществляете планирование сценария для размещения активов, то должны ожидать, что около 100% активов. размещенных в соответствии с рассматриваемым сценарием, могут быть потеря­ны в какое-либо время в будущем. Например, вы используете данный метод, что­бы определить сумму средств, предназначенных для инвестирования в акции. До­пустим, вы приходите к выводу, что 65% средств должно быть инвестировано в акции, а оставшиеся 35% в безрисковые активы. Следует ожидать, что проигрыш в будущем может достичь 100% суммы, размещенной на фондовом рынке. Други­ми словами, вы должны быть готовы, что в какой-либо точке в будущем почти 100% активов от ваших 65%, размещенных в акции, будут проиграны. Однако именно таким образом вы достигнете максимального геометрического роста. Ту же процедуру можно использовать для альтернативного параметрического метода определения оптимального f в торговле. Допустим, вы принимаете торго­вые решения, основываясь на фундаментальных данных. Вы намечаете различ­ные сценарии, которые могут произойти в процессе торговли. Чем больше сцена­риев и чем точнее сценарии, тем лучше будут полученные результаты. Предполо­жим, вы решили купить муниципальные облигации, но при этом не планируете удерживать их до срока погашения. Вы можете рассмотреть множество сценариев будущих событий и использовать эти сценарии для определения оптимального размера инвестиций.

Концепцию планирования сценария для определения оптимального f можно использовать во многих областях: от военных стратегий до определения оптималь­ного уровня участия в подписке на акции или оптимальной предоплаты за дом. Этот метод, вероятно, является лучшим и уже точно самым легким для тех, кто не использует механические решения при входе и выходе с рынка. Трейдеры, которые торгуют по фундаментальным данным, графикам, волнам Эллиотта или с помо­щью любого другого метода, требующего субъективного суждения, могут найти оп­тимальные f с помощью этого подхода — он намного проще, чем поиск значений параметров распределения. Арифметическое среднее HPR группы сценариев можно рассчитать следую­щим образом:

  • Читать дальше
  • 1
  • ...
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: