Вход/Регистрация
Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров
вернуться

РАЛЬФ ВИНС РАЛЬФ

Шрифт:

в 1,00 означает, что данные, которые вы тестируете, отклонены на 1 стандартное отклонение от среднего значения.

Счет Z затем переводится в доверительную границу, которая иногда также на­зывается степенью достоверности. Площадь под кривой нормального распреде­ления вероятности шириной в 1 стандартное отклонение с каждой стороны от среднего значения равна 68% всей площади под этой кривой. Преобразуем счет Z в доверительную границу. Связь счета Z и доверительной границы следующая: счет Z является числом стандартных отклонений от среднего значения, а довери­тельная граница является долей площади под кривой, заполненной при таком числе стандартных отклонений.

Доверительная Счет Z
граница(%)
99,73 3,00
99 2,58
98 2,33
97 2,17
96 2,05
95,45 2,00
95 1,96
90 1,64

При минимальном количестве 30 закрытых сделок мы можем рассчитать счет Z. Попытаемся узнать, сколько периодов выигрышей (проигрышей) можно ожи­дать от данной системы? Соответствуют ли периоды выигрыша (проигрыша) тес­тируемой системы ожидаемым? Если нет, существует ли достаточно высокая до­верительная граница, чтобы допустить, что между сделками существует зависи­мость, т.е. зависит ли результат текущей сделки от результата предыдущих сделок? Ниже приведено уравнение серийного теста. Счет Z для торговой системы равен:

(1.1) Z=(N*(R-0,5)-Х)/((Х*(Х-N))/(N-1))^(1/2), где

N = общее число сделок в последовательности;

R = общее число серий выигрышных или проигрышных сделок;

X=2*W*L;

W = общее число выигрышных сделок в последовательности;

L = общее число проигрышных сделок в последовательности.

Этот расчет можно провести следующим образом:

1. Возьмите данные по вашим сделкам:

A) Общее число сделок, т.е. N.

Б) Общее число выигрышных сделок и общее число проигрышных сделок.

Теперь рассчитайте X.

Х = 2 * (Общее число выигрышей) * (Общее число проигрышей).

B) Общее число серий в последовательности, т.е. R.

2. Предположим, что произошли следующие сделки:

– 3, +2, +7, -4, +1, -1, +1, +6, -1, 0, -2, +1.

Чистая прибыль составляет +7. Общее число сделок 12, поэтому N = 12. Теперь нас интересует не то, насколько велики выигрыши и проигрыши, а то, сколько было выигрышей и проигрышей, а также серий. Поэтому мы можем переделать наш ряд сделок в простую последовательность плюсов и минусов. Отметьте, что сделка с нулевой прибылью считается проигрышем. Таким образом:

– + + - +-++---+

Как видно, последовательность состоит из 6 прибылей и 6 убытков, поэтому X =2 * 6 * 6 = 72. В последовательности есть 8 серий, поэтому R = 8. Мы называ­ем серией каждое изменение символа, которое встречается при чтении последова­тельности слева направо (т.е. хронологически).

1. Последовательность будет выглядеть следующим образом:- + + - +-++---+ т.е. 1 2 3 4 5 6 7 8

2. Вычислите значение выражения:

N*(R-0,5)-X Для нашего примера:

12* (8 -0, 5) -72

12*7,5-72

90 - 72

18

3. Вычислите значение выражения:

(X*(X-N))/(N-1) Для нашего примера:

(72* (72-12))/(12-1)

(72* 60)/11

4320/11

392,727272

4. Возьмите квадратный корень числа, полученного в пункте 3. В нашем примере:

392,727272 ^(1/2) = 19,81734777

5. Разделите ответ из пункта 2 на ответ из пункта 4. Это и есть счет Z. В нашем примере:

18/19,81734777 = 0,9082951063

6. Теперь преобразуйте ваш счет Z в доверительную границу. Распределение периодов является биномиальным распределением. Однако когда рассмат­риваются 30 или больше сделок, мы можем использовать нормальное рас­пределение, как близкое к биномиальному. Таким образом, если вы исполь­зуете 30 или более сделок, вы просто можете преобразовать ваш счет Z в до­верительную границу, основываясь на уравнении (3.22) для нормального распределения.

Серийный тест подскажет вам, содержит ли ваша последовательность выигры­шей и проигрышей больше или меньше полос (серий выигрышей или проигры­шей), чем можно было бы ожидать от действительно случайной последовательно­сти, в которой нет зависимости между испытаниями. Так как в нашем случае мы находимся на уровне относительно низкой доверительной границы, то можно допустить, что между сделками в этой последовательности нет зависимости.

Если счет Z имеет отрицательное значение, то при расчете доверительной гра­ницы просто возьмите его абсолютное значение. Отрицательный счет Z говорит о положительной зависимости, то есть полос меньше, чем при нормальном распре­делении вероятности, и следовательно, выигрыши порождают выигрыши, а про­игрыши порождают проигрыши. Положительный счет Z говорит об отрицатель­ной зависимости, то есть полос больше, чем при нормальном распределении ве­роятности, и следовательно, выигрыши порождают проигрыши, а проигрыши порождают выигрыши.

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: