Вход/Регистрация
Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
вернуться

Брюков Владимир Георгиевич

Шрифт:

USDollar = 1,1085568 x USDollar(-l)^0,969092. (6.7)

При этом интерпретация формулы (6.7) будет следующей: рост на 1 % курса доллара в текущем месяце в среднем способствовал повышению курса доллара в прогнозируемом месяце на 0,969 % при исходном уровне курса доллара, равном 1,1086 рублей.

Проверим полученную статистическую модель на наличие автокорреляции в остатках. Для проверки будем использовать алгоритм действий № 7 «Как выполняется LM– тест Бройша — Годфри в EViews». Для выполнения теста в диалоговом мини-окне LAG SPECIFICATION (лаговая спецификация) нужно установить 1, поскольку в нашем уравнении авторегрессии есть только одна факторная переменная с одним лагом (см. формулу (6.5)). Поскольку величина задаваемого лага определяется для модели ARMA(p, q) = mах(р, q), то в этом случае она приобретает следующий вид: ARMA(1, 0) = max(l, 0) = 1.

По результатам проведения этого теста получилась табл. 6.5, из которой следует, что наблюдается автокорреляция в остатках. Об этом свидетельствует нулевой уровень значимости как основного критерия теста Obs х R-squared (Наблюдения x R2), так и дополнительного — F-statistic (F– критерия).

Чтобы устранить автокорреляцию в остатках, необходимо изменить спецификацию статистической модели. С этой целью попробуем использовать для прогнозирования курса доллара модель авторегрессии со скользящим средним в остатках ARMA(1,1) (см. формулу (6.2)). Однако ввести в EViews эту формулу необходимо в следующем виде:

log(USDollar) с log(USDollar(-l)) МА(1), (6.8)

где с — константа;

log(USDollar(-l)) — логарифм от переменной с лагом в один месяц;

МА(1) — представляет собой скользящую среднюю первого порядка.

При этом следует иметь в виду одну тонкость: в опциях диалогового мини-окна EQUATION ESTIMATION (оценка уравнения) по умолчанию устанавливается параметр BACKCAST МА TERMS (рекурсивное вычисление предыдущей ошибки в МА-процессе). В этом случае значение предыдущей ошибки (отклонения прогноза от фактического курса доллара в прошлом месяце) для точечного прогноза по первому наблюдению находится рекурсивным методом (см. ввод этой опции на рис. 6.5).

Если в параметре BACKCAST МА TERMS убрать «галочку», значение прошлой ошибки в точечном прогнозе для первого наблюдения приравнивается нулю, поскольку оно на тот момент отсутствует. В свою очередь в случае применения в статистической модели скользящей средней второго порядка прошлые ошибки при прогнозировании не только первого, но и второго наблюдений либо приравниваются нулю, либо вычисляются рекурсивным методом.

В результате ввода в диалоговое мини-окно EQUATION ESTIMATION формулы (6.7) получается следующий вывод данных (табл. 6.6). Причем все полученные коэффициенты в этом уравнении у нас получились статистически значимыми (все выделенные жирным шрифтом значения Prob. меньше 0,05). Кстати, в таблице появляется информация о рекурсивном вычислении предыдущей ошибки относительно июня 1992 г. — Backcast: 1992М06. После замены буквенных обозначений вычисленными коэффициентами получилось следующее уравнение регрессии со скользящей средней:

log(USDollar) = 0,105219 + 0,968257 x log(USDollar(-l)) + 0,253616 et-1, (6.9)

где еt-1 — прошлая ошибка (отклонение фактического курса доллара от его прогноза), которая в уравнении (6.8) представлена скользящей средней МА(1).

К сожалению, в отличие от формулы (6.5) формулу (6.9) нельзя путем потенцирования привести к исходному временному ряду, что обусловлено применением в этой статистической модели скользящей средней, рассчитанной применительно к остаткам, полученным от логарифмического ряда. Поэтому интерпретация формулы (6.9) будет достаточно затруднительной, поскольку мы вынуждены ее дать относительно логарифмического, а не исходного временного ряда.

Тем не менее все-таки эту интерпретацию нужно представить, чтобы смысл уравнения (6.9) был для читателя более понятен. Во-первых, рост на одну единицу логарифмического значения курса доллара в текущем месяце в среднем способствовал повышению логарифмического значения курса доллара в прогнозируемом месяце на 0,968 ед. (при исходном уровне логарифмического значения курса доллара, равном 0,105 ед.). Во-вторых, рост на одну единицу отклонения логарифмического значения фактического курса доллара от его прогноза способствовал повышению логарифмического значения курса доллара в прогнозируемом месяце в среднем на 0,254 ед.

6.3. Тестирование модели авторегрессии со скользящей средней на автокорреляцию в остатках и проверка стационарности ее ARMA-структуры

Теперь посмотрим, есть ли автокорреляция в остатках у полученной статистической модели, а потому вновь проведем тестирование с помощью LM– теста Бройша — Годфри. Причем при выполнении теста в диалоговом мини-окне LAG SPECIFICATION (лаговая спецификация) нужно, как и в предыдущем случае, установить 1, поскольку в нашем уравнении авторегрессии со скользящим средним ARMA(1,1) как факторная переменная, так и скользящая средняя имеют один лаг (см. формулу (6.8)).

По результатам проведения этого теста у нас получилась табл. 6.7, данные которой уверенно свидетельствуют об отсутствии автокорреляции в остатках. Такой вывод можно сделать исходя из того, что уровень значимости как основного критерия теста Obs x R-squared (Наблюдения x R2), так и дополнительного — F-statistic (F– критерия) существенно выше 0,05.

Теперь протестируем ARMA-структуру этого уравнения на стационарность, воспользовавшись при этом алгоритмом действий № 13. В результате у нас получится табл. 6.8, свидетельствующая, что ARMA-структура этой статистической модели получилась стационарной, поскольку все обратные корни в этом уравнении лежат внутри единичного круга. Этот вывод можно найти в нижней части этой таблицы.

  • Читать дальше
  • 1
  • ...
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: