Вход/Регистрация
Веселые задачи. Две сотни головоломок
вернуться

Перельман Яков Исидорович

Шрифт:

113. Оставить четыре квадрата

Из той же фигуры (рис. 111) так извлеките 8 спичек, не трогая других, чтобы оставшиеся спички составили 4 одинаковых квадрата.

114. Оставить три квадрата

В той же решетке (рис. 111) так уберите 6 спичек, не перекладывая остальных, чтобы осталось всего 3 квадрата.

115. Оставить два квадрата

И наконец, в той же фигуре (рис. 111) так уберите 8 спичек, не трогая остальных, чтобы осталось всего лишь два квадрата.

116. Шесть четырехугольников

В фигуре, представленной на рис. 112, нужно так переложить 6 спичек с одного места на другое, чтобы образовалась фигура, составленная из 6 одинаковых четырехугольников.

Рис. 112.

117. Из дюжины спичек

Из 12 спичек нужно составить фигуру, в которой было бы три одинаковых четырехугольника и два одинаковых треугольника.

Как это сделать?

118. Из полутора дюжин

Из 18 спичек нужно сложить два четырехугольника так, чтобы площадь одного была втрое больше площади другого. Спички, как и во всех предыдущих задачах, переламывать нельзя. Оба четырехугольника должны лежать обособленно, не примыкая друг к другу.

119. Два пятиугольника

Если вам удалось решить предыдущую задачу, попытайтесь решить такую головоломку.

Из 18 спичек сложить два пятиугольника так, чтобы площадь одного была ровно втрое больше площади другого. Остальные условия те же, что и в предыдущей задаче.

120. Из 19 и из 12

На рис. 113 вы видите, как можно 19 целыми спичками ограничить шесть одинаковых участков.

А можно ли ограничить шесть одинаковых участков — хотя бы и иной формы — 12 целыми спичками?

Рис. 113.

Решения задач 111-120

111. Решение этой задачи из рис. 114.

Рис. 114.

112 —115. Решение задачи 112 показано на рис. 115. задачи 113 на рис. 116 и 117, задачи 114 — на рис. 118, задачи 115 — на рис. 119.

Рис. 115.

Рис. 116.

Рис. 117.

Рис. 118.

Рис. 119.

116. Смотри на рис. 120.

Рис. 120.

117. Решение задачи 117 показано на рис. 121. Это равносторонний шестиугольник (но не правильный, поскольку его углы не равны).

Рис. 121.

118. Решение этой задачи показано на рис. 122. Площадь верхней фигуры образуют два квадрата, каждый со сторонами в одну спичку. Нижний четырехугольник представляет собой параллелограмм, высота которого АВ = 11/2 спички. Площадь параллелограмма по правилам геометрии равна его основанию, умноженному на высоте: 4 x 11/2 = 6, т. е. втрое больше площади верхнего четырехугольника.

Рис. 122.

119 —120. Решения задач 119 и 120 наглядно показаны на рис. 123 и 124.

Рис. 123.

Рис. 124.

Вес и взвешивание

121. Вес бревна

Круглое бревно весит 30 кг. Сколько весит бревно, если оно вдвое толще, но вдвое короче нашего?

122. Десятичные весы

Сто килограммов железных гвоздей уравновешены на десятичных весах железными гирями. Весы затопило водой.

Сохранили ли они равновесие под водой?

123. Вес бутылки

Бутылка, наполненная керосином, весит 1000 г. Та же бутылка, наполненная кислотой, весит 1600 г. Кислота вдвое тяжелее керосина.

Сколько весит бутылка?

124. Брусок мыла

На одну чашку весов положен брусок мыла, на другую — 3/4 такого же бруска и гиря в 3/4 килограмма. Весы в равновесии.

Сколько весит целый брусок мыла? Постарайтесь решить эту несложную задачу устно, без карандаша и бумаги.

Рис. 125. Сколько весит брусок мыла?

  • Читать дальше
  • 1
  • ...
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: