Вход/Регистрация
Веселые задачи. Две сотни головоломок
вернуться

Перельман Яков Исидорович

Шрифт:

Решения задач 141-150

141. Начнем наблюдать за движением стрелок в XII часов. В этот момент одна стрелка покрывает другую. Так как часовая стрелка движется в 12 раз медленнее минутной (она описывает полный круг за 12 ч, а минутная за 1 ч), то в течение ближайшего часа стрелки, конечно, встретиться не могут. Но вот прошел час; часовая стрелка стоит у цифры I, сделав 1/12 долю полного оборота; минутная же сделала полный оборот и стоит у XII — на 1/12 долю круга позади часовой. Теперь условия состязания иные, чем раньше: часовая стрелка движется медленнее минутной, но она впереди, и минутная должна ее догнать. Если бы состязание длилось целый час, то за это время минутная стрелка прошла бы полный круг, а часовая — 1/12 круга, т. е. минутная сделала бы на 11/12 круга больше. Но чтобы догнать часовую стрелку, минутной нужно пройти больше, чем часовой, только на ту 1/12 долю круга, которая их отделяет. Для этого потребуется времени не целый час, а меньше во столько раз, во сколько 1/12 меньше 11/12, т. е. в 11 раз. Значит, стрелки встретятся через 1/11 ч, т. е. через 60/11 = 11/12 мин.

Итак, встреча стрелок случится спустя 55/11 мин после часа дня, т. е. в 55/11 мин второго.

Когда же произойдет следующая встреча?

Нетрудно сообразить, что это случится через 1 час 55/11 мин, т. е. в 2 ч. 105/11 мин. Следующая — спустя еще 1 час 55/11 мин, т. е. в 3 ч 164/11 мин, и т. д. Всех встреч, как легко видеть, будет 11; последняя наступит через 11/11 x 11 = 12 ч после первой, т. е. в 12 ч; другими словами, очередная встреча стрелок совпадает с самой первой и дальнейшие встречи повторятся снова в известные моменты.

Вот полный перечень встреч:

1-я встреча — в 1 ч 55/11 мин

2-я —»— в 2» 1010/11 »

3-я —»— в 3» 164/11»

4-я —»— в 4» 219/11»

5-я —»— в 5» 273/11»

6-я —»— в 6» 328/11»

7-я —»— в 7» 382/11 »

8-я —»— в 8» 437/11»

9-я —»— в 9» 391/11»

10-я —»— в 10» 546/11»

11-я —»— в 12 ч

142. Эта задача решается весьма сходно с предыдущей. Начнем опять с 12 ч, когда положение стрелок одинаково. Нужно вычислить, сколько времени потребуется для того, чтобы минутная стрелка обогнала часовую ровно на полкруга — тогда стрелки и будут направлены как раз в противоположные стороны. Мы уже знаем (см. предыдущую задачу), что в течение целого часа минутная стрелка обгоняет часовую на 11/12 полного круга; чтобы обогнать ее всего на 1/2 круга, понадобится меньше времени, чем целый час. Причем, во столько раз, во сколько 1/2 меньше 11/12,т. е. потребуется всего 6/11 ч. Значит, после 12 часов стрелки в первый раз располагаются одна против другой спустя 6/11 ч, или 328/11 мин. Взгляните на часы в противоположные стороны.

Единственный ли это момент, когда стрелки так расположены? Конечно, нет. Такое положение стрелки занимают спустя 328/11 минуты после каждой встречи. А мы уже знаем, что встреч бывает 11 в течение двенадцати часов; значит, и располагаются стрелки врозь тоже 11 раз в течение 12 часов. Найти эти моменты нетрудно:

12 ч + 328/11 мин = 12 ч 328/11 мин

1 ч 55/11 мин + 328/11 мин = 1 ч 387/11 мин

2 ч 1010/11 мин + 328/11 мин = 2 ч 437/11 мин

3 ч 161/11 мин + 328/11 мин = 3 ч 491/11 мин и т. д.

Вычислить остальные моменты предоставляю вам самим.

143. Если начать наблюдение за стрелками ровно в 12 часов, то в течение первого часа мы искомого расположения не заметим. Почему? Потому что часовая стрелка проходит 1/12 того, что проходит минутная, и, следовательно, отстает от нее гораздо больше, чем требуется. На какой бы угол ни отошла от XII минутная стрелка, часовая повернется на 1/12 этого угла, а не на 1/2, как нам требуется. Но вот прошел час; теперь минутная стрелка стоит у XII, часовая — у I, на 1/12 полного оборота впереди минутной. Посмотрим, не может ли такое расположение стрелок наступить в течение второго часа. Допустим, что момент этот наступил тогда, когда часовая стрелка отошла от цифры XII на долю полного оборота, которую мы обозначим через х. Минутная стрелка успела к этому времени пройти в 12 раз больше, т. е. 12 x х Если вычесть отсюда один полный оборот, то остаток 12 x х — 1 должен быть вдвое больше, чем х, т. е. равняться 2 x х. Итак, 12 x х— 1 = 2 x х, откуда следует, что 1 целый оборот равен 10 x х (действительно, 12 x х — 10 x х = 2 x х). Но если 10 x х = целому обороту, то х = 1/10 части оборота. Вот и решение задачи: часовая стрелка отошла от цифры XII на 1/10 полного оборота, на что требуется 12/10 ч, или 1 ч 12 мин. Минутная стрелка при этом будет вдвое дальше от XII, т. е. на расстоянии 1/5 оборота; это соответствует 60/5 = 12 мин — как и должно быть.

Мы нашли одно решение задачи. Но есть и другие: стрелки в течение двенадцати часов располагаются таким же образом не один раз, а несколько. Попытаемся найти остальные решения.

Для этого дождемся двух часов; минутная стрелка стоит у XII, а часовая — у II. Рассуждая, как прежде, получаем равенство

12xх — 2 = 2 x х,

откуда 2 целых оборота равны 10 x х и, значит, х = 1/5 целого оборота. Часы будут показывать при этом 12/5 = 2 ч 24 мин.

Дальнейшие моменты читатель легко вычислит сам и найдет, что стрелки располагаются согласно требованию задачи в следующие 10 моментов:

в 1 ч 12 мин в 7 ч 12 мин

в 2 ч 24 мин в 8 ч 24 мин

в 3 ч 36 мин в 9 ч 36 мин

в 4 ч 48 мин в 10 ч 48 мин

в 6 ч в 12 ч

Ответы: «в 6 часов» и «в 12 часов» могут показаться неверными, — но только с первого взгляда. Действительно, в 6 часов часовая стрелка стоит у VI, минутная — у XII, т. е. ровно вдвое дальше от начальной отметки XII (успев описать один оборот). В 12 же часов часовая стрелка удалена от XII на нуль, а минутная, если хотите, на «два нуля» (потому что двойной нуль — то же, что и нуль); значит, и этот случай, в сущности, удовлетворяет условию задачи.

  • Читать дальше
  • 1
  • ...
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: