Шрифт:
125. Кошки и котята
Четыре кошки и 3 котенка весят 15 кг, а 3 кошки и 4 котенка весят 13 кг.
Сколько весит каждая кошка и каждый котенок в отдельности?
Постарайтесь и эту задачу решить устно.
Рис. 126.
126. Раковина и бусины
Три детских кубика и 1 раковина уравновешиваются 12 бусинами (рис. 127), 1 раковина весит столько же, сколько 1 кубик и 8 бусинок (рис. 128).
Рис. 127.
Рис. 128.
Сколько бусин нужно положить на свободную чашку весов, чтобы уравновесить раковину на другой чашке?
127. Вес фруктов
Вот еще задача в этом роде. Рис. 129 показывает, что 3 яблочка и 1 груша весят столько же, сколько 10 персиков, а 6 персиков и 1 яблочко — столько же, сколько 1 груша.
Рис. 129.
Сколько персиков надо взять, чтобы уравновесить одну грушу?
128. Сколько стаканов?
На рис. 130 и 131 вы видите, что:
— бутылка и стакан уравновешиваются кувшином;
— бутылка сама по себе уравновешивается стаканом и блюдцем;
— два кувшина уравновешиваются тремя блюдцами. Сколько надо поставить стаканов на свободную чашку весов, чтобы уравновесить бутылку?
Рис. 130. Задача о стаканах и бутылке.
Рис. 131. Чем уравновесить бутылку?
129. Гирей и молотом
Надо развесить 2 кг сахарного песку на 200-граммовые пакеты. Имеется только одна 500-граммовая гиря, да еще молоток, весящий 900 г.
Как получить все 10 пакетов, пользуясь этой гирей и молотком?
Рис. 132. Затруднение при развешивании.
130. Задача Архимеда
Самая древняя из головоломок, относящихся к взвешиванию, без сомнения, та, которую древний правитель сиракузский Гиерон задал знаменитому математику Архимеду.
Предание повествует, что Гиерон поручил мастеру изготовить венец для одной статуи и приказал выдать ему необходимое количество золота и серебра. Когда венец был доставлен, взвешивание показало, что он весит столько же, сколько весили вместе выданные золото и серебро. Однако правителю донесли, что мастер утаил часть золота, заменив его серебром. Гиерон призвал Архимеда и предложил ему определить, сколько золота и сколько серебра заключает изготовленная мастером корона. Архимед решил эту задачу, исходя из того, что чистое золото теряет в воде 20-ю долю своего веса, а серебро — 10-ю.
Если вы желаете испытать свои силы на подобной задаче, примите, что мастеру было отпущено 8 кг золота и 2 кг серебра и что, когда Архимед взвесил корону под водой, она весила не 10, а всего 91/4 кг. Попробуйте определить по этим данным, сколько золота утаил мастер. Венец был изготовлен из сплошного металла, без пустот.
Решения задач 121-130
121. Обычно отвечают, что бревно вдвое более толстое, но вдвое более короткое, не должно изменить своего веса. Однако это неверно. От увеличения поперечника вдвое объем круглого бревна увеличивается вчетверо; от укорочения же вдвое объем уменьшается всего в два раза. Поэтому толстое короткое бревно должно быть вдвое тяжелее длинного тонкого, т. е. весить 60 кг.
122. При погружении в воду железная вещь (сплошная) теряет 8-ю долю своего веса [12] . Поэтому и гири, и гвозди под водой будут иметь 7/8 своего прежнего веса. И так как гири в 10 раз легче гвоздей, то и под водой они будут легче их в 10 раз. Следовательно, десятичные весы останутся и под водой в равновесии.
123. Из условия задачи мы знаем, что
вес бутылки + вес керосина = 1000 г.
А так как кислота вдвое тяжелее керосина, то вес бутылки + двойной вес керосина = 1600 г.
12
Я не сообщил этой цифры в условии задачи потому, что сама величина потери — 8-я, 10-я или 20-я часть — для решения задачи не имеет значения.
Отсюда ясно, что разница в весе: 1600–1000, т. е. 600 г, есть вес керосина, налитого в бутылку. Но бутылка вместе с керосином весит 1000 г; значит, бутылка весит 1000 — 600 = 400 г.
Действительно, вес кислоты (1600 — 400 = 1200 г) оказывается вдвое больше веса керосина.
124. Три четверти бруска мыла плюс гиря в 3/4 килограмма весят столько же, сколько целый брусок. Но целый брусок — это 3/4 бруска плюс 1/4 бруска. Значит, 1/4 бруска весит 3/4 кг. И следовательно, целый брусок весит в четыре раза больше, чем 3/4 кг, т. е. 3 кг.