Вход/Регистрация
Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
вернуться

Рэндалл Лиза

Шрифт:

Когда я училась в средней школе, я провела лето в математическом лагере (что оказалось намного более интересным, чем вы можете подумать), и там нам показали киноверсию «Флатландии» [11] . В конце диктор с очаровательным британским акцентом безуспешно пытается указать на недоступное флатландцам третье измерение, говоря: «Наверх, а не на север!» К сожалению, мы испытаем ту же неудовлетворенность, если попытаемся указать проход к четвертому пространственному измерению. Но точно так же, как флатландцы не видели или не перемещались сквозь третье измерение, хотя оно и существует в истории Эбботта, тот факт, что мы никогда не видели другого измерения, не означает, что его нет. Итак, хотя мы никогда до сих пор не наблюдали такое измерение и не путешествовали сквозь него, лейтмотивом всей книги «Закрученные пассажи» будет фраза: «Не на север, а вперед вдоль пассажа!» Кто знает, что существует из того, чего мы еще не видели?

11

Это мультфильм режиссера Эрика Мартина, сопровождаемый голосами Дадли Мура и других актеров британской комедийной труппы За гранью (Beyond the Fringes). Это было очень смешно.

Три из двух

В оставшейся части этой главы, вместо того чтобы размышлять о пространствах, имеющих более трех измерений, я поговорю о том, как с помощью наших ограниченных зрительных возможностей мы собираемся представлять и рисовать три измерения, используя двумерные образы. Понимание того, как мы совершаем этот пассаж от двумерных образов к трехмерной реальности, пригодится позднее, когда мы будем интерпретировать малоразмерные «картинки» многомерных миров. Относитесь к этому разделу как к разминочному упражнению, для того чтобы приучить ваш мозг к дополнительным измерениям. Было бы неплохо помнить, что в обычной жизни вы все время имеете дело с размерностью. На самом деле все это не так уж незнакомо.

Часто все, что мы можем видеть, — это кусочки поверхностей, которые обрамляют вещи. Хотя эта внешняя оболочка и изгибается в трехмерном пространстве, она имеет два измерения, так как для определения положения любой точки на ней нужно задать два числа. Мы приходим к выводу, что поверхность не трехмерна, так как у нее нет толщины.

Смотря на картины, экраны кинотеатров, мониторы компьютеров или рисунки в этой книге, мы, вообще говоря, смотрим не на трехмерные, а на двумерные изображения. Но тем не менее мы можем восстановить изображенную трехмерную реальность.

Для построения трех измерений мы можем использовать двумерную информацию. Этот процесс включает урезание информации при создании двумерных представлений и одновременно попытку сохранить достаточно информации для воспроизводства важных элементов исходного объекта. Обратимся к часто используемым методам сведения объектов более высокой размерности к меньшему числу измерений: нарезка слоями, проектирование, голография и иногда просто пренебрежение размерностью, — и обратному процессу восстановления тех трехмерных объектов, которые они представляют.

Наименее сложный способ заглянуть за поверхность — сделать тонкие слои. Каждый слой двумерен, но комбинация слоев образует реальный трехмерный объект. Например, когда вы покупаете ветчину в магазине, трехмерный кусок окорока быстро нарезают на много двумерных ломтей [12] . Складывая все ломти, можно реконструировать форму всего трехмерного куска.

Эта книга трехмерна. Однако ее страницы имеют только два измерения. Объединение двумерных страниц образует книгу [13] . Можно многими разными способами проиллюстрировать это объединение. Один способ показан на рис. 8, на котором мы смотрим на книгу сбоку. На этом рисунке мы опять играем с размерностью, так как каждая линия представляет страницу. Поскольку все мы знаем, что линии соответствуют двумерным страницам, эта иллюстрация всем ясна. Позднее мы используем аналогичный подход, чтобы изобразить объекты в многомерных мирах.

12

Ломти окорока на самом деле имеют некоторую толщину, поэтому они хоть и тонкие, но трехмерные. Их размер в этом дополнительном измерении настолько мал, что в хорошем приближении можно считать ломти двумерными. Однако даже при произвольной толщине двумерных ломтей можно представить себе, как они складываются вместе, образуя трехмерный кусок.

13

Вновь заметим, что для того, чтобы страницы были по-настоящему двумерны, они должны быть бесконечно тонкими, вообще не имеющими никакой толщины в третьем измерении. Однако в данный момент два измерения — это хорошее приближение для страниц такой толщины, как эти.

Разрезание на слои — лишь один из способов заменить высшие измерения более низкими. Другим способом является проектирование — технический термин, заимствованный из геометрии. Проектирование содержит строгие предписания для создания образа объекта, имеющего меньшее число измерений. Тень на стене — один из примеров двумерной проекции трехмерного объекта. На рис. 9 показано, каким образом теряется информация, когда мы (или кролики) осуществляем проектирование. Точки на тени определяются только двумя координатами, лево — право или вверх — вниз на стене. Однако проектируемый объект имеет третье пространственное измерение, которое не сохраняется в проекции.

Простейший способ осуществить проектирование состоит в том, чтобы отбросить одно измерение. Например, на рис. 10 показан куб в трех измерениях, спроектированный на два измерения. Проекция куба может иметь много форм, простейшая из которых есть квадрат.

Возвращаясь к предыдущим примерам графиков Икара и Афины, мы можем построить двумерный график Икара, если пренебрежем его вождением спортивных автомобилей. На самом деле нам не важно, сколько сов выращивает Афина, поэтому мы можем построить не пятимерный, а четырехмерный график. Пренебрежение совами Афины и есть проектирование.

Проекция теряет информацию об исходном многомерном объекте (рис. 9). Однако, когда с помощью проектирования мы создаем картину с меньшим числом измерений, мы иногда добавляем информацию, помогающую восстановить часть потерянного. Дополнительной информацией может быть штриховка или цвет, как в живописи или фотографии. Это может быть число, как на топографических картах для указания высоты местности. Наконец, какие-либо метки могут вообще отсутствовать, и в этом случае двумерное описание просто несет меньше информации.

  • Читать дальше
  • 1
  • ...
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: