Шрифт:
Если бы не оба наших глаза, работающих совместно и позволяющих реконструировать три измерения, все, что мы видим, было бы проекциями. Если закрыть один глаз, восприятие глубины становится грубее. Один глаз создает двумерную проекцию трехмерной реальности. Чтобы воспроизвести три измерения, нужны два глаза.
У меня близорукость на одном глазу и дальнозоркость на другом, поэтому я не могу должным образом объединять изображения от обоих глаз, если не надеваю очков (что случается редко). Хотя мне сказали, что у меня будут проблемы с реконструкцией трех измерений, обычно я этих проблем не замечаю — все вокруг меня выглядит трехмерным. Это происходит потому, что для реконструкции трехмерных образов я полагаюсь на тени и перспективу (и свое знакомство с внешним миром).
Однако однажды в пустынной местности мы с другом пытались дойти до далекого утеса. Мой друг убеждал меня, что мы должны двигаться прямо, а я никак не могла понять, почему он настаивает, чтобы мы шли прямо сквозь скалу. Оказалось, что скала, про которую я думала, что она выступает непосредственно из утеса, полностью загораживая нам путь, находилась на самом деле значительно ближе к нам, перед утесом. Эта скала, которая, как мне казалось, преградит нам путь, на самом деле вообще не имела отношения к утесу. Путаница возникла из-за того, что мы были вблизи утеса около полудня, когда нет никаких теней, и у меня не было способа построить третье измерение, которое бы указало мне, каким образом далекие утесы и скалы расположены относительно друг друга. Я никогда не осознавала своей компенсирующей стратегии с использованием теней и перспективы, до тех пор пока она не дала сбой.
Живопись и черчение всегда требуют, чтобы художники сводили все, что они видят, к спроектированным образам. В средневековом искусстве это делалось максимально простым образом. На рис. 11 показано мозаичное изображение города в виде двумерной проекции. Ничто на этой мозаике не указывает на третье измерение, нет никаких меток или индикаторов его существования.
Со времен Средневековья художники разработали способы делать такие проекции, которые частично исправляют потерю на картине одного измерения. Один подход, противоположный средневековому уплощению пространства, это метод, использованный кубистами в двадцатом веке. Кубистическая картина (например, «Портрет Доры Маар» Пикассо, рис. 12 представляет одновременно несколько проекций, каждая из которых получена под другим углом, и поэтому передает ощущение трехмерности субъекта.
Однако большинство западноевропейских художников со времен Ренессанса для создания иллюзии третьего измерения использовали перспективу и затенение. Одним из важнейших навыков в живописи является способность так свести трехмерный мир к двумерному представлению, чтобы зритель мог обратить процесс и восстановить исходную трехмерную сцену или объект. Наше культурное воспитание приучило нас знать, как расшифровывать образы, даже при отсутствии полной трехмерной информации.
Художники пытались даже представить на двумерных плоскостях многомерные объекты. Например, на картине Сальвадора Дали «Распятие» (Corpus Нуpercubus) (рис. 13) крест показан как развернутый гиперкуб. Этот объект состоит из восьми кубов, прикрепленных друг к другу в четырехмерном пространстве. Именно эти кубы Дали и нарисовал. На рис. 14 я показываю несколько проекций гиперкуба.
Я уже упоминала физический пример — квазикристаллы, которые выглядят как проекции многомерного кристалла на наш трехмерный мир. Проекции можно также использовать для практических, а не только художественных целей. В медицине есть много примеров, когда трехмерные объекты проектируются на два измерения. Рентген органов всегда фиксирует двумерную проекцию. В методе компьютерной томографии изображения складываются из множества рентгеновских снимков и реконструируют более информативное трехмерное представление. Имея в распоряжении рентгеновские снимки, сделанные под достаточно большим числом углов, можно использовать интерполяцию, чтобы собрать полные трехмерные изображения. С другой стороны, магнито-резонансное сканирование восстанавливает трехмерный объект по срезам.
Другим способом записи трех измерений на двумерной поверхности является голографическое изображение. Хотя голографическое изображение записывается на поверхности меньшей размерности, оно на самом деле несет всю информацию об исходном пространстве большей размерности. Возможно, один из образцов такой техники лежит в вашем кошельке: трехмерное изображение на вашей кредитной карте и есть голограмма.
Голографическое изображение записывает взаимосвязи между светом в разных местах, так что затем можно восстановить всю многомерную картину. Этот принцип во многом похож на тот, который используется в хорошем стереопроигрывателе, позволяющем слышать, где находились одни инструменты по отношению к другим во время записи. С помощью информации, запасенной в голограмме, глаз действительно может реконструировать тот трехмерный объект, который эта голограмма представляет.
Перечисленные методы показывают, как можно получить больше информации от образа с меньшим числом измерений. Однако, может быть, все, что нам действительно нужно, так это поменьше информации. Часто мы просто не обращаем внимания на все три измерения. Например, нечто может быть настолько тонким в третьем измерении, что в этом направлении не происходит ничего интересного. Даже несмотря на то, что краска на этой странице реально трехмерна, мы ничего не потеряем, если будем считать ее двумерной. До тех пор, пока мы не посмотрим на страницу под микроскопом, у нас просто нет достаточного разрешения, чтобы увидеть толщину краски. Проволока выглядит одномерной, хотя при более близком рассмотрении вы можете увидеть, что она имеет двумерное поперечное сечение, и тем самым все три измерения.
Нет ничего ошибочного в пренебрежении дополнительным измерением, если оно слишком мало, чтобы его видеть. Обычно можно пренебречь не только зрительными эффектами, но также и физическими явлениями, связанными с очень слабыми, недетектируемыми процессами. При формулировке своих теорий или проведении вычислений ученые часто пренебрегают (иногда непреднамеренно) физическими процессами, происходящими на не поддающихся измерению малых масштабах, или производят по ним усреднение. Законы движения Ньютона работают на расстояниях и при скоростях, которые он мог наблюдать. Для того чтобы делать успешные предсказания, ему не нужны были детали общей теории относительности. Когда биологи изучают клетку, им не нужно знать про кварки внутри протона.