Вход/Регистрация
Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
вернуться

Кёртен Роб

Шрифт:

int CLID_AddSingleNPANXX(int npa, int nxx) {

 struct clid_addnpanxx_t msg;

 checkAttach; // Оставить или нет — дело вкуса

 msg.npa = npa;

 msg.nxx = nxx;

 return

(devctl(clid_pid, DCMD_CLID_ADD_NPANXX,

&msg, sizeof(msg), NULL));

}

Как видите, операция относительно безболезненная. (Для тех, кто не любит devctl за то, что приходится отправлять в обе стороны блоки данных одного и того же размера, см. ниже обсуждение сообщений _IO_MSG.). Опять же, если вы пишете программу, которая должна работать в обеих операционных системах, вам следует выделить функцию обмена сообщениями в отдельный библиотечный модуль и предоставить несколько вариантов реализации, в зависимости от применяемой операционной системы.

Реально мы убили двух зайцев:

1. отказались от глобальной переменной и стали собирать сообщения на основе стековой переменной — это делает нашу программу безопасной в многопоточной среде (thread- safe);

2. передали структуру данных нужного размера вместо структуры данных максимального размера, как мы это делали в предыдущем примере с QNX4.

Заметьте, что нам пришлось определить константу DCMD_CLID_ADD_NPANXX — в принципе, мы могли бы для этих же целей применить константу CLID_MsgAddSingleNPANXX (сделав соответствующее изменение в заголовочном файле), но я просто хотел подчеркнуть тот факт, что эти две константы не являются одинаковыми.

Второй убитый заяц заключался в том, что мы передали «структуру данных нужного размера». На самом деле, мы тут немножко приврали. Обратите внимание на то, что функция devctl имеет только один параметр размера (четвертый, который мы установили в

sizeof(msg)
). Как на самом деле происходит пересылка данных? Второй параметр функции devctl содержит команду для устройства (поэтому и «DCMD»). Двумя старшими битами команды кодируется направление, которое может быть одним из четырех:

1. «00» — передачи данных нет;

2. «01» — передача от драйвера клиенту;

3. «10» — передача от клиента драйверу;

4. «11» — двунаправленная передача.

Если вы не передаете данные (то есть достаточно просто команды) или передаете их в одном направлении, то применение функции devctl — прекрасный выбор. Интересен тот вариант, когда вы передаете данные в обоих направлениях. Интересен он тем, что, поскольку у функции devctl только один параметр размера, обе пересылки данных (как драйверу, так и от драйвера) передадут весь буфер данных целиком! Это хорошо в том частном случае, когда размеры буферов «ввода» и «вывода» одинаковы, но представьте себе, что буфер принимаемых драйвером данных имеет размер в несколько байт, а буфер передаваемых данных гораздо больше. Поскольку у нас есть только один параметр размера, мы вынуждены будем каждый раз передавать драйверу полный буфер данных, хотя требовалось передать всего несколько байт!

Эта проблема может быть решена применением «своих собственных» сообщений на основе общего механизма управляющих последовательностей, поддерживаемого в сообщениях типа _IO_MSG.

Сообщение типа _IO_MSG было предусмотрено для того, чтобы дать вам возможность вводить свои собственные типы сообщений, не конфликтуя при этом со «стандартными» типами сообщений администраторов ресурсов, поскольку для администраторов ресурсов сам тип сообщения _IO_MSG уже является «стандартным».

Первое, что вы должны сделать при использовании сообщений типа _IO_MSG — это определить ваши «специальные» сообщения. В этом примере мы определим два таких типа и последуем стандартной модели сообщений администратора ресурсов: один тип будет сообщением ввода, другой — вывода.

typedef struct {

 int data_rate;

 int more_stuff;

} my_input_xyz_t;

typedef struct {

 int old_data_rate;

 int new_data_rate;

 int more_stuff;

} my_output_xyz_t;

typedef union {

 my_input_xyz_t i;

 my_output_xyz_t o;

} my_message_xyz_t;

Здесь мы определили новый тип — объединение (union) из сообщений ввода и вывода — и назвали этот тип

my_message_xyz_t
. Закономерность в имени идентификатора заключается в том, что это сообщение относится к службе «
xyz
» какова бы она ни была. Сообщение ввода имеет тип
my_input_xyz_t
, а сообщение вывода —
my_output_xyz_t
. Отметьте, что и «ввод», и «вывод» определяются с позиции администратора ресурса: «ввод» — это данные, поступающие в администратор ресурса, а «вывод» — это данные, поступающие из него (обратно клиенту).

Нам надо придумать какой-то вызов API для клиента — мы, конечно, можем принудить клиента «вручную» заполнять структуры

my_input_xyz_t
и
my_output_xyz_t
, но я не рекомендовал бы так делать по той причине, что API призван «отвязать» реализацию передаваемого сообщения от функциональности. Давайте предположим, что API клиента у нас такой:

int adjust_xyz(int *data_rate, int *оdata_rate,

  • Читать дальше
  • 1
  • ...
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: