Френкель Адольф
Шрифт:
Опубликованная в 1874 г. работа [10] представляет собой, наряду со средней частью статьи [5], публикацию Кантора, открывающую теорию множеств; в ней делается решительный шаг к строгому разграничению трансфинитного, особенно в отношении мощности. В наивном понятии «бесконечного» исчезали все различия, и сам Кантор вначале предполагал еще континуум счетным; в этой же статье за теоремой о счетности множества алгебраических чисел следует доказательство, что множество всех действительных чисел уже несчетно. Именно, для каждой последовательности действительных чисел Кантор строит с помощью принципа вложенных отрезков не принадлежащее ей число. Из сопоставления обоих результатов вытекает существование бесконечного множества трансцендентных чисел в любом интервале. Естественно было бы искать еще более высокие трансфинитные мощности, перейдя от одномерного континуума к многомерным. Как показывает корреспонденция Кантора с Дедекиндом, эта мысль занимала исследователя уже летом 1874 г. Насколько нужен был новый подход, чтобы вообще усмотреть здесь какую-либо проблему, видно из письма Кантора: он рассказывает, как один его друг в Берлине объявил идею об отобразимости линейного континуума на плоский «заведомо абсурдной, поскольку само собой разумеется, что две независимых переменных не сводятся к одной»; подобную же отповедь получил он позже при посещении Геттингена по случаю юбилея Гаусса в 1877 г. В письме от 20 июня 1877 г. он сообщает Дедекинду, после многолетних усилий, свою попытку построить отображение одномерного континуума на многомерный, и просит друга проверить доказательство; результат оказался для него самого в высшей степени неожиданным : “je le vois, mais je ne le crois pas” («вижу, но не верю») и, как он думал, колеблющим понятие размеренность, т. е. возможность охарактеризовать размерность числом независимых координат. В ответе Дедекинда указывается пробел в доказательстве (позже устраненный с помощью несложного приема Юлиусом Кенигом); это побудило Кантора перейти от первоначально использованных им разложений в десятичные дроби к представлениям цепными дробями. Далее, Дедекинд, защищая понятие размерности, подчеркивает значение требования, чтобы соответствие было непрерывным.
По существу, усовершенствованное доказательство, сообщенное затем в письме Дедекинду, и содержится в работе [11], где устанавливается независимость мощности континуума от его размерности. В этой работе, между прочим, вводится уже понятие эквивалентности, понятие мощности и высказывается гипотеза континуума. Здесь содержится также, без доказательства, утверждение о сравнимости мощностей; ясно, что в то время (и еще долго впоследствии) Кантор считал это свойство самоочевидным.
Опубликование этой работы в «Журнале Крелля» не обошлось без трудностей; она пролежала в редакции, после поступления 12 июля 1877 г., дольше обычного тогда срока и гораздо дольше, чем это допускало нетерпение Кантора, хотя за нее и вступился Вейерштрасс. В ноябре автор горько жаловался Дедекинду, что печатание статьи, вопреки заверениям редакции, «совершенно непостижимым для него образом» затягивается и откладывается в пользу работ, поступивших позднее; вероятно, причина заключалась в парадоксальности ее результата для того времени. К счастью, Дедекинду удалось, ссылаясь на собственный опыт, отговорить друга от опрометчивого намерения забрать рукопись и напечатать ее в виде отдельного сочинения; вскоре трудности в редакции рассеялись, и статья вышла из печати. Это была, однако, последняя публикация Кантора в «Журнале Крелля»; если даже допустить, что Кантор придал слишком серьезное значение задержке опубликования, причиной ее было уже, по-видимому, отрицательное отношение Кронеккера к идеям своего ученика, из которого впоследствии и развился кризис 1884 года. В то время как все эти обстоятельства тяжело удручали Кантора, назначение его ординарным профессором в Галле удовлетворило его лишь в ограниченной степени, потому что он стремился к другой должности и к более широкому кругу действия. Уже в 1874 г. он сознается Дедекинду: «Во время каникул я никогда не мог здесь долго выдержать, потому что единственное, что меня в течение пяти лет, некоторым образом, привязывает к Галле - это однажды избранная университетская профессия». Он предполагал, что отсутствие приглашений из других мест объясняется критической оценкой его работ влиятельными коллегами; при том почти бесспорном авторитете, которым пользовался тогда Кронеккер, это кажется вполне оправданным. Так, в 1883 г. Кантор, подавая министру прошение о месте в Берлине, не только не рассчитывал на немедленный успех, но заранее предвидел препятствия со стороны Шварца и Кронеккера; прошение не имело успеха, вызвав сильное противодействие Кронеккера.
Поразительное, почти не известное замечание Кантона, по-видимому, доказывает, что уже в начале семидесятых годов он ясно понимал значение зарождавшихся у него идей, а также сопротивление, которое они должны вызвать; в то время исследования о тригонометрических рядах только что привели его к актуальной бесконечности, а первая его работа, посвященная теории множеств в узком смысле [10], еще не была опубликована. Намереваясь сделать доклад в Обществе Естествоиспытателей города Галле для которого, естественно, следовало выбрать общедоступный предмет, он остановился на теории вероятностей, которой занимался уже в течение нескольких лет. И вот, в докладе, состоявшемся б декабря 1873 г., он замечает по поводу француза де Мере, оспаривавшего авторитет Паскаля в одном вопросе теории вероятностей: «Как я полагаю, шевалье де Mepe может послужить предостерегающим примером всем противникам точного исследования, какие встречаются во все времена и повсюду; ибо с ними также может приключиться, что именно в том месте, где они пытаются нанести науке смертельные раны, вскоре расцветет перед их взором новая ветвь, возможно, плодотворнее прежних - как теория вероятностей перед взором шевалье де Мере». Отметим еще, что в более поздних письмах к Миттаг-Лефлеру Кантор постоянно называет Кронеккера псевдонимом «г-н фон Мере».
В противоположность Кронеккеру, Вейерштрасс уже тогда проявил полное понимание идей своего прежнего ученика. Он заинтересовался уже докладом в семинаре, где тот, еще будучи студентом, располагал рациональные числа в последовательность; точно так же, после недолгой первоначальной озадаченности, он очень быстро оценил сообщенное ему в 1873 году понятие счётности в его общем виде, и сразу воспользовался счётностью алгебраических чисел в одном вопросе, касающемся действительных функций [7] . Далее Кантор по предложению Вейерштрасса впервые применил понятие счетности к анализу (в работе [8]), и обратно, канторова теория объема в [13] побудила Вейерштрасса заняться теорией действительных функций [8] .
7
См. письмо Вейерштрасса П. Дю Буа-Реймону от 15 декабря 1874 г. ( Acta. Mathematica, 39, стр. 206, 1924)
8
См. письмо Вейерштрасса Софье Ковалевской от 16 мая 1885 г. ( ibid. , стр.195 и далее)
С работой [11] тесно связана, и в некотором смысле противостоит ей, работа [12], в которой предпринята попытка выяснить значение непрерывности для понятия размерности; идея эта, по существу, возникла из переписки с Дедекиндом. Как известно, теорема об инвариантности размерности, о которой идет речь в этом (недостаточном) доказательстве, была строго обоснована лишь Л. Э. И. Брауэром много десятилетий спустя.
Начало восьмидесятых годов было временем интенсивнейшего творчества Кантора, могучего, переливающегося через все видимые границы развертывания его гениальных идей; но тогда же произошел тяжелый кризис в его жизни, не покинувший его до конца.
Работа [13], опубликованная в шести частях в 1879-84 годах, принадлежит к тем историческим явлениям, когда совершенно новая мысль, открывающая целую эпоху и полностью противоречащая воззрениям прошлого и настоящего, пробивается и кристаллизуется со все возрастающей отчетливостью, лишь постепенно осознаваемая в своей смелости и новизне самим ее творцом. В 1870 году ему впервые является идея трансфинитных чисел; в 1873 году он постигает значение счетности и зияющую пропасть, отделяющую ее от континуума; лишь теперь он решается предложить современникам свои идеи во всей их широте, отдавая себе полный отчет в их возможном воздействии: так, он говорит о «предметах, примыкающих к теории множеств или теснейшим образом с нею связанных, как, например, современная теория функций и, с другой стороны, логика и теория познания». Во всяком случае, часть пятая этой работы [13] , вышедшая также отдельно с предисловием [9] , делает ее важным событием не только в математике и философии, но и вообще в истории науки и человеческого мышления; без сомнения, она еще окажется поучительной и ценной с самых разнообразных точек зрения, пока нам недоступных.
9
Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematisch-phlosophischer Versuch in der Lehre des Unendlichen (Основания общей теории многообразий. Математико-философский опыт учения о бесконечном), Лейпциг, 1883 г.
Редакция “Mathematische Annalen” снискала высокую заслугу, открыв страницы своего журнала идеям, решительно неприемлемым для математического и философского мира того времени, которым еще предстояло более десятилетия ожесточенно бороться за свое признание.
В серии статей [13] излагается, главным образом, теория точечных множеств [10] ; вместе с дополняющими ее работами [14]–[16] она содержит, прежде всего, теорию производных множеств, исследование строения точечных множеств и теорию объема, а также теорию порядковых чисел, в особенности второго класса. Следует упомянуть еще некоторые отдельные места, непосредственно не относящиеся к этим основным темам, но имеющие общее значение: сохранение свойства связности Rn, когда из него удаляется счетное всюду плотное множество, после чего в столь разрывном пространстве оказывается возможным непрерывное движение; признание автора в конце части пятой, что успешное продолжение его исследований невозможно без расширения числового ряда в трансфинитную область, и его убеждение в том, что это расширение, как бы оно ни казалось сначала спорным математическому миру, в конце концов проложит себе путь; осуждение бесконечно малых величин, а также финитистской точки зрения Кронеккера, и дискуссия с финитистски ориентированными философами древности и средних веков до Спинозы, Лейбница и Канта; историко-критический и логико-математический анализ сущности континуума; общий метод вложенных интервалов. В эту последовательность статей вклинивается работа [8] , в которой Кантор, по инициативе Вейерштрасса, использует понятие счетности в своем методе сгущения особенностей.
10
Еще одна, седьмая статья, предусмотренная Кантором, не была осуществлена (что можно объяснить уже его болезнью)
В безмерном духовном напряжении, связанном с зарождением революционных идей работы [13], в особенности теории трансфинитных чисел, и с утверждением их вопреки сопротивлению современных исследователей, отягчающую роль сыграли две специфических трудности: борьба с проблемой континуума и усиление антагонизма с Кронеккером. О том и другом мы хорошо осведомлены благодаря изданным А. Шенфлисом письмам Кантора к Миттаг-Лефлеру [11] от 1884 года, когда произошел решающий поворот в его жизни.
11
А. Шенфлис. Кризис в математическом творчестве Кантора. Acta Mathem., 50, 1–23 (1928). Ср. также Миттаг-Лефлер, ibid., стр. 25 и далее.