Френкель Адольф
Шрифт:
Более внимательного рассмотрения заслуживают также философские интересы Кантора, его математическое мировоззрение, отчасти связанное с ними, и его отношение к религии.
Из написанных им в 80-ые годы работ [3] (часть 5) и “"Uber die verschiedenen Standpunkte in Besug auf das aktuelle Unendliede”, “Mitteilungen zur Lehre vom Transfiniten” видно поразительное знакомство Кантора с философской литературой, и притом не только с обширными частями современных и несколько более старых сочинений, но и с классиками философии предыдущих столетий, и в особенности с важнейшими философско-тео-логическими авторами схоластики и с Аристотелем. Мы находим у него глубокое изучение философии, почти всегда восходящее к источникам, но привлекающее также обширную историко-философскую литературу; круг его интересов распространяется на представителей древнегреческой атомистики и их противников, Платона и Аристотеля, Августина и других отцов церкви, Боэция, Фому Аквинского и многих других схоластов, Николая Кузанского и Джордано Бруно, Декарта, Спинозу, Локка, Лейбница, Канта и Фриса; даже за полстолетия до нас это было редким исключением для исследователя, специальностью которого не является философия. Сверх того, Кантор находился в тесных научных, а также в личных дружеских отношениях с его младшими коллегами Эдмундом Гуссерлем и Германом Шварцем, защищавших в Галле диссертации по философий. Напротив, к устремлениям «математической логики» (Шредер, Фреге и т.д.) он относился отрицательно. По проницательному замечанию Феликса Клейна [37] , нельзя считать случайностью, что Кантор прошел также схоластическую школу; более, чем в других математических дисциплинах, где на передний план выступают систематически-конструктивное, а часто специфически-вычислительное, способы рассуждений в теории множеств (по крайней мере, в абстрактной) своей общностью, но в то же время своей тонкостью и аналитической расчлененностью напоминают рассуждения схоластической логики и теологии; математическое учение об актуальной бесконечности во многом родственно им также своей смелостью, с другой же стороны, схоластика, подобно математике, ставит перед собой идеал строгости умозаключений. Вообще же для Кантора философия была отнюдь не посторонней областью, в которую приходилось входить ради математических целей; для него обе области были глубоко связаны. У своих читателей он предполагал не только математические, но и философские познания; насколько он считал это существенным, видно из предисловия к отдельному изданию части 5 работы [13], где он объясняет, что писал одновременно для двух кругов читателей: и «для философов, проследивших развитие математики до новейшего времени, и для математиков, знакомых с важнейшими явлениями старой и новой философии».
37
«Лекции о развитии математики в XIX веке», ч. 1, Берлин, 1926. Приведем оттуда следующее место: «Если освободить схоластические рассуждения от этой мистико-метафизически окрашенной оболочки, в которой они представляются поверхностному взгляду чисто теологическими тонкостями, то они часто оказываются вполне правильными подходами к тому, что мы теперь называем теорией множеств». Что касается Больцано, то схоластика очевидным образом была отправным пунктом его исследований о бесконечности
Из отдельных мест, имеющих философское значение, упомянем замечание в работе [13], ч. 5, о формировании понятий; в противоположность «субстанциальному» пониманию Аристотеля, здесь изображается функциональный процесс в том смысле, как он утвердился в современном учении о формировании понятий у Риккерта, Кассирера и др. Далее, следует отметить, что Кантор упорно и неоднократно боролся (против Гамильтона, Когена и др.) с еще и ныне высказываемой точкой зрения, согласно которой число или понятие величины основывается на понятии времени; в работе [13], ч. 5, он в особенности возражает против учения о времени Канта.
Для общего понимания математики Кантором существенно представление о реальности научных идей (например, целых - конечных и бесконечных - чисел); эта реальность имеет для него двоякий смысл: с одной стороны, как интрасубъективная или имманентная реальность, закрепленная определениями, отводящими соответствующему понятию определенное, отдельное от других понятий место в человеческом мышлении, благодаря чему это понятие «некоторым образом модифицирует субстанцию нашего разума»; с другой же стороны, как транссубъективная или трансиентная реальность, когда понятие является «отражением процессов и отношений в противостоящем интеллекту внешнем мире» (См. [13], ч. 5).
Для Кантора оба вида реальности совпадают, вследствие единства содержащего нас самих всеобщего, и он полагает, что каждому понятию, реальному в первом смысле, присуща также и трансиентная реальность, установление которой составляет часто труднейшую задачу метафизики. Характерное же преимущество математики он усматривает в том, что она «при разработке своего идейного материала должна принимать во внимание исключительно одну лишь имманентную реальность ее понятий, вовсе не будучи при том обязана подвергать их испытанию также в отношении их трансиентной реальности» [38] . На этой характеристике, объясняющей, как ему кажется, «относительную легкость и беспрепятственность занятий математикой, он основывает свое предложение присвоить ее почетное наименование «свободной математики».
38
Возникает вопрос, сознательно или несознательно примыкает здесь Кантор к Г. Ганкелю, уже в 1867 г. в своей “Theorie der komplexen Zalensysteme” («Теории комплексных числовых систем»), указавшему в качестве предмета математики «интеллектуальные объекты», которым действительные объекты или их отношения могут но не обязаны соответствовать»
Кантор описывает здесь своеобразие и значение математики (и тем самым, можно было бы добавить, также теоретической логики) в чисто рациональном плане, определяя ее, коротко говоря, как ту науку, которая не содержит метафизики; это вовсе не значит, однако, что его отношение к математике было односторонним. Уже два первых тезиса его диссертации показывают, как высоко он ценил ее еще в юношеские годы в эстетическом и этическом отношении: “Eodem modo literis atque arte animos delectari posse” и “Jure Spinosza mathesi eam tribuit, ut hominibus norma et regula veri in omnibus rebus indagandi sit”
Вопреки той уверенности, с которой Кантор усматривал сущность математики в ее свободе, следует заметить, что эмоционально он отнюдь не был склонен признать непротиворечивость единственным критерием существования математических объектов. В самом деле, ведь он пришел к трансфинитным порядковым числам не «свободным путем работы [13], ч. 5, а в некотором смысле вынужденный к этому итерацией построения производных множеств, в частности, стремлением к созданию их общей символики. Точно так же, его чрезмерно резкое отрицание «бесконечно малых», без сомнения, объясняется ощущением преимущества трансфинитных чисел - выводимых из «данных» множеств [39]– по сравнению с общими неархимедовыми системами величин.
39
Ср. следующее место в работе “"Uber die verschiedenen Standpunkte in Besug auf das aktuelle Unendliede”: «Если бы первое (множество) не противостояло нам как объект, то чт'o могло бы последнее (соответствующее кардинальное число) отражать в качестве абстрактного образа в нашем разуме?»
Мы упомянули выше убеждение Кантона, что математическим понятиям, наряду с имманентной реальностью, только и касающейся математика, сама собою присуща также транссубъективная реальность; с этим теснейшим образом связано представление Кантора, которое можно в несколько заостренной форме выразить словами: математик не изобретает предметы своей науки, но открывает их. Это воззрение, выраженное уже в третьем тезисе его диссертации, снова подчеркивается в конце его творчества, когда он предпосылает завершающему изложению [18] эпиграфы:
“Hypothesis non fingo” («Гипотез я не выдумываю») и “Neque enim leges intellectui aut rebus datum arbitrium nostrum, sed tanquam scribae fideles ab ipsius naturae voce latas et prolatas excipimus et describimus” («Ибо мы не даем законов разуму и вещам по нашему произволу, но, словно верные писцы, схватываем и записываем их с голоса самой природы»). Вообще говоря, для творческой деятельности математика безразлично, рассматривает ли он свои понятия как платоновские идеи, как произвольные создания рассудка или примиряя эти точки зрения (Гессенберг), как создания независимо творящего разума, замечательно, однако, что именно в проблематике теории множеств, касающейся несчетного, эти различия в мировоззрении могут играть иногда существенную роль [40] . То обстоятельство, что для Кантора (и, очевидным образом, также для Больцано) понятия математики обладали существованием, независимым от их открытия и вообще от нашего мышления, а в некотором смысле ему предшествующим, весьма существенно для понимания подхода Кантора к занимавшим его проблемам (например, к проблеме континуума). Это убеждение поддерживало также упрямство, с которым он в течение двух десятилетий почти в одиночестве отстаивал свои идеи И следующее ниже место из письма Миттаг-Лефлеру в начале 1884 г. не только свидетельствует о скромности, но скорее должно рассматриваться как выражение этой метафизической точки зрения: «..что касается остального (кроме стиля и сжатости изложения), то это не моя заслуга: по отношению к содержанию моих работ я всего лишь секретарь или посредник». Конечно, нельзя не заметить известной неувязки между двумя тезисами Кантора - с одной стороны, о «свободе» математики и, с другой стороны, о заданном характере математических объектов.
40
Ср. мою книгу и Einleitung in die Mengenlehre («Введение в теорию множеств») (3-е изд., Берлин, 1928), стр. 325-322