Шрифт:
Итак, определенные аспекты числа — такие, как основание, способ составления числительных и используемые словоформы — различны в разных культурах. Однако ранние цивилизации проявляли удивительное единодушие в отношении механических средств для счета и вычислений. Общий метод, который они применяли, называется «позиционным». Он основан на принципе, согласно которому различные положения используются для представления чисел различных порядков. Рассмотрим, что это означало, например, для пастухов в средневековом Линкольншире. Как уже говорилось, у них было 20 чисел, от «yan»до «piggot». Как только пастух доходил в счете овец до 20, он откладывал камушек и начинал снова считать от «yan»до «piggot». Если имелось 400 овец, у него должно было набраться 20 камушков, потому что 20 x 20 = 400. Представим себе теперь, что у пастуха тысяча овец. Если он пересчитает их всех, у него наберется 50 камушков, потому что 20 x 50 = 1000. Однако перед ним встает проблема: у него нет способа их сосчитать, ведь его счет ограничен числом 20!
Всего овец = (10 x 20) + (2 x 400) = 1000
Однако выход есть: нужно нарисовать на земле параллельные бороздки, как показано на рисунке. Когда пастух насчитает 20 овец, он положит камень в первую бороздку. Когда он насчитает следующие 20, положит еще один камень в первую бороздку. Первая бороздка будет постепенно заполняться камнями. Но когда настанет момент класть туда двадцатый камень, вместо этого он положит один-единственный камень во вторую бороздку, а из первой уберет все камни. Другими словами, один камень во второй борозде означает 20 камней в первой — в точности так же, как один камень в первой означает 20 овец. Тогда камень во втором ряду будет означать 400 овец. Пастух, у которого тысяча овец, при использовании этой процедуры получит два камня во втором ряду и десять в первом. Используя подобную позиционную систему счисления — когда разные борозды придают различные значения положенным в них камням, — он потратил только 12 камней, чтобы досчитать до 1000 овец, а не 50 камней, которые потребовались бы без этого изобретения.
Позиционные системы счета использовались по всему миру. Вместо камней в бороздках инки передвигали бобы или зерна маиса на специальных лотках. Североамериканские индейцы передвигали бусины или ракушки на разноцветных нитках. Греки и римляне использовали фишки из костей, слоновой кости или металла, лежащие на столах с размеченными колонками. В Индии использовали отметки на песке.
Кроме того, римляне изобрели абак, представлявший собой механическую реализацию «позиционного» принципа: в абаке бусинки передвигали по прорезям. Этот переносной вариант счетной системы распространился по всему цивилизованному миру, хотя детали и варьировались от страны к стране. В России на счетах имеется десять костяшек на каждом стержне. В китайском «суаньпане» их семь, а в японском «соробане» — самом компактном из всех — пять.
Для представления однозначного числа на соробане используется один стержень. Для представления двузначного числа — два соседних стержня, трехзначные числа требуют уже трех стержней и т. д. Каждая цифра из числа всегда представляется на отдельном стержне, причем на всех стержнях имеется десять различных положений — они соответствуют числам от 0 до 9.
Абак был изобретен как способ простого счета, но по-настоящему сила этого инструмента проявилась, как только его стали использовать в качестве средства для вычислений. Арифметика значительно упростилась, когда в дело оказались вовлечены передвигаемые по стержням бусинки. Например, чтобы вычислить сумму «3 плюс 1», мы начинаем с того, что передвигаем 3 бусинки, затем передвигаем одну бусинку — и ответ готов — 4 бусинки прямо у вас перед глазами. Чтобы вычислить, скажем, сумму «31 плюс 45», в двух соседних колонках сдвигаем 3 бусинки и 1 бусинку, а затем перемещаем к ним 4 бусинки и 5 бусинок соответственно. Получаем 7 бусинок в левой колонке и 6 бусинок в правой, это и есть ответ: 76. После небольшой тренировки сложение чисел любой длины не представляет никакой трудности, нужно только иметь достаточно колонок, в которых эти числа могли бы разместиться. Если на какой-либо колонке сложение двух чисел дает в результате число больше десяти, надо передвинуть бусинки в соседней слева колонке. Например, 9 плюс 2 дает 1 бусинку в левой колонке и 1 бусинку в исходной колонке, что и представляет собой ответ: 11. Вычитание, умножение и деление выполняются немного более хитрым способом, но коль скоро вы их освоили, вычисления совершаются на удивление быстро.
Числа на соробане
По-японски «читать, писать, считать» звучит как «йоми, каки, соробан», что означает «чтение, письмо, абак». Эта фраза родилась в Японии где-то между XVII и XIX веками, когда страна была практически полностью изолирована от остального мира. По мере возникновения нового класса, класса торговцев, которым потребовались умения, несколько выходящие за рамки искусного владения самурайским мечом, возникала и сеть частных местных школ, где преподавали язык и арифметику, причем в обучение входило освоение приемов вычислений на абаке. Около миллиона юных японцев до сих пор изучают абак: в стране существует примерно 20 000 специальных кружков или клубов, которые дети посещают после школы, — занятия в них ведутся в соответствии с традициями старых японских школ. Понятно, что сейчас интерес к обучению вычислениям на абаке значительно упал. Пик популярности пришелся на 1970-е годы — до появления электронного калькулятора, — когда каждый год 3,2 миллиона учащихся даже сдавали государственный экзамен по владению соробаном. В переходный период между эрами ручных и электронных вычислений в Японии можно было купить изделие, сочетающее в себе и калькулятор, и абак. Сложение, как правило, выполняется быстрее на абаке — ответ появляется немедленно, как только вы ввели заданные числа. Что же касается умножения, то тут небольшим преимуществом в скорости обладает электронный калькулятор. (А кроме того, абак позволял скептически настроенным абакистам проверить ответ, который выдавал калькулятор, — ну, если они вдруг начинали сомневаться в нем.)
Соробан — калькулятор
Владение абаком в Японии по-прежнему считается чрезвычайно важным для подрастающего поколения; вычисления на этом устройстве остаются одним из основных внеклассных занятий наряду с плаванием, игрой на скрипке или дзюдо, причем обучение работе на абаке ведется в духе обучения боевым искусствам. Уровни мастерства измеряются в данах, проводятся соревнования разного уровня и даже чемпионаты страны. Как-то воскресным днем я отправился на такой региональный турнир. В нем участвовали без малого триста детей от 5 до 12 лет. Они сидели за партами в конференц-зале, вооруженные целым набором «соробанных» аксессуаров типа модных футляров для них. Перед первой партой стоял диктор. С интонацией нетерпеливого муэдзина он оглашал числа, которые предстояло складывать, вычитать или умножать. Соревнование шло на выбывание и продолжалось несколько часов. Когда пришло время вручать победителям награды — каждая из которых включала крылатую фигуру, в поднятых руках держащую абак, — из динамиков зазвучала музыка в исполнении военного духового оркестра.
После нескольких лет обучения работе на абаке вы настолько хорошо усваиваете расположение бусинок, что можете выполнять вычисления, просто мысленно представляя его себе. Эта процедура, называемая «анзан», выглядит довольно занятно — несмотря на то, что и смотреть-то, вообще говоря, не на что! Я наблюдал, как это происходит, в клубе любителей абака в Токио. Преподаватель Юдзи Миямото читал числа, обращаясь к замершей и погруженной в полную тишину аудитории, после чего в течение нескольких секунд ученики поднимали руки, показывая, что ответ готов. Один ученик по имени Наоки Фуруяма сказал мне, что он может мысленно представить себе абак с восемью столбцами. Другими словами, его воображаемый абак позволяет изображать все числа от 0 до 99 999 999.
Клуб любителей абака, которым руководит Миямото, — один из самых известных в стране: его ученики получают немало данов за разнообразные достижения во время чемпионатов страны, однако специализируются в этом клубе именно на анзане. Несколько лет назад Миямото решил придумать такой тип арифметических задач, которые решаются только на анзане. Например, когда вы задаете ученикам какой-то пример, ответ можно получить различными способами: используя калькулятор, карандаш и бумагу, или же абак, или анзан. Миямото хотел продемонстрировать, что имеются ситуации, когда анзан представляет собой единственный возможный метод.