Вход/Регистрация
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
вернуться

Беллос Алекс

Шрифт:

Достижение Лемэра было, без сомнения, весьма впечатляющим. В указанном числе 200 цифр, которые за 70,2 секунды едва можно успеть произнести. Но подтверждает ли этот «подвиг» его слова о том, что он — величайший молниеносный вычислитель всех времен и народов? По этому поводу в «вычислительной» среде мнения сильно разнятся, как и почти 200 лет назад, после битвы между Зирой Колберном и Джорджем Биддером.

Выражение «корень 13-й степени из x» означает число, которое при умножении само на себя 13 раз дает x.Лишь ограниченное количество чисел при умножении на себя 13 раз дает 200-значное число. (Это ограниченное количество — довольно большое. Оно находится в пределах около 400 триллионов различных вариантов, каждый из которых имеет длину в 16 цифр и начинается с двойки.) Поскольку число 13 — простое, а кроме того, считается несчастливым, вычисление Лемэра было окутано дополнительной аурой тайны. На самом же деле 13 обладает и некоторым преимуществом. Например, когда число 2 умножается на себя 13 раз, ответ заканчивается на цифру 2. Когда 3 умножается на себя 13 раз, ответ заканчивается на 3. То же верно для 4, 5, 6, 7, 8 и 9. Другими словами, последняя цифра корня 13-й степени из некоторого числа такова же, что и последняя цифра этого исходного числа. Мы получили ее легко, вообще не прибегая ни к каким вычислениям.

Лемэр разработал алгоритмы, которые он не разглашает, для вычисления остальных 14 цифр в окончательном ответе. Приверженцы строгости утверждают — возможно, и несправедливо, — что его талант — это способность не столько к хитрым вычислениям, сколько к запоминанию жутко длинных последовательностей цифр. При этом они указывают, что Лемэр не может найти корень 13-й степени из любого 200-значного числа, которое ему сообщат. В Музее науки ему предложили несколько сот чисел, из которых он выбрал то, для которого и произвел вычисление.

Тем не менее выступления Лемэра в большей степени продолжают традиции старых эстрадных вычислителей. Зрители желают приобщиться к шоу, а не вникать в процесс. Наоборот, на чемпионате мира по устному счету у Кото не было возможности выбрать задачу для решения и он не пользовался никакими таинственными приемами. Он просто использовал таблицу умножения на числа от 1 до 9.

Беседуя с участниками соревнований в Лейпциге, я обнаружил, что многие из них увлеклись устным счетом благодаря Виму Клайну — голландскому эстрадному вычислителю, знаменитому в 1970-х годах. Клайн уже был ветераном цирков и мюзик-холлов, когда в 1958 году ему предложили работу в ведущем европейском физическом институте — Европейском центре ядерных исследований (ЦЕРН) в Женеве. Он должен был выполнять там различные вычисления для физиков. Вероятно, он был последним человеком-вычислителем, получившим работу по своей специальности. По мере развития компьютеров его искусство становилось ненужным, и, выйдя на пенсию, он вернулся в шоубизнес — снимался на телевидении. (Клайн, кстати, на самом деле был первым, кто популяризировал вычисления корней 13-й степени.)

За столетие до Клайна другой эстрадный вычислитель, Йохан Захария Дазе, также поступил на работу в научное учреждение, чтобы вычислять необходимые суммы. Дазе родился в Гамбурге и начал выступать в качестве эстрадного вычислителя еще подростком. Тогда он и попался на глаза двум видным математикам. В те времена, до изобретения электронных или механических калькуляторов, ученые всякий раз, когда им требовалось выполнить сложное умножение или деление, полагались на таблицы логарифмов. У каждого числа есть свой собственный логарифм (я буду говорить об этом подробнее в следующей главе), который можно вычислить, пользуясь трудоемкой процедурой сложения дробей. Дазе вычислил натуральные логарифмы первых 1 005 000 чисел с точностью до 7 десятичных разрядов каждый. Это заняло у него три года, и, по его словам, работа доставила ему удовольствие. Затем, по совету математика Карла Фридриха Гаусса, Дазе приступил к более масштабному предприятию: составлению таблиц множителей, на которые разлагаются все числа, лежащие между 7 000 000 и 10 000 000. Это означало, что он брал каждое из чисел в указанном диапазоне и вычислял его делители — то есть находил целые числа, на которые данное число делится. Например, у числа 7 877 433 только два делителя: 3 и 2 625 811. К моменту своей смерти в возрасте 37 лет Дазе реализовал значительную часть этой программы.

Однако гораздо чаще Дазе вспоминают совсем за другое вычисление. Еще подростком он вычислил число с точностью в 200 разрядов, что для того времени было рекордом.

* * *

В окружающем нас мире окружности и круги присутствуют повсюду — и в видимой форме Луны, и в глазах людей и животных, и в срезе яйца, которое вы едите на завтрак. Привяжите собаку к шесту, воткнутому в землю, и путь, по которому она будет бегать вокруг шеста, охраняя территорию на натянутом поводке, будет окружностью. Окружность — это простейшая геометрическая форма. И древнему египтянину, прикидывающему, сколько зерна потребуется, чтобы засеять круглое поле, и римскому мастеровому, отмеряющему, сколько дерева пойдет на колесо, требовались вычисления, связанные с окружностями.

Уже в античные времена люди понимали, что отношение длины окружности к ее диаметру всегда одно и то же, независимо от величины окружности. Это отношение известно как число , его величина — чуть больше трех. Так что если вы возьмете диаметр окружности и, слегка изогнув, приложите его к самой окружности, то окажется, что он укладывается в ней три с небольшим раза.

Хотя число и представляет собой простое отношение, если выражать его через свойства окружности, задача нахождения его точного значения оказалась вовсе не простой. Эта неуловимость числа тысячи лет завораживала математиков. И чего тут удивляться! — единственное число, одновременно являющееся названием и песни (Кейт Буш) [26] , и парфюма (мужской туалетной воды от «Givenchy»). Кстати, из отдела «Givenchy» по связям с общественностью мне прислали следующий текст:

26

Буш Кейт(Kate Bush) — английская исполнительница, работающая на стыке поп-музыки и прогрессивного рока; песня «Pi» вошла в альбом «Aerial» (2005). В словах этой песни имеются такие строки:

………………………………… In a circle of infinity 3,141592653589793238462643383279 Oh he love, he love, he love 50288419716939937510 5823197494459230781 6406286208821480865132. ………………………………… He does love his numbers ………………………………… 8230664709384460955058223

( Примеч. nepeв.)

— Пи

ЗА ПРЕДЕЛАМИ БЕСКОНЕЧНОСТИ

Прошло четыре тысячи лет, а эта тайна

все еще остается тайной.

И хотя каждый школьник изучает ,

этот знакомый символ

по-прежнему скрывает в себе бездны

величайшей сложности.

Почему мы выбрали как вечный символ

мужского начала?

Все дело в знаках и указателях.

Если — это история

долгой борьбы за достижение недостижимого,

то это и портрет

легендарного покорителя неизведанного,

идущего вперед в поисках Знания.

Пи говорит нам о мужчинах, обо всех мужчинах,

об их научном гении,

об их тяге к приключению, об их готовности

к действию

и об их стремлении к недостижимому.

* * *

Самые ранние приближения числа дошли до нас от древних вавилонян, использовавших значение 3 1/ 8, и от египтян, которые пользовались значением 4( 8/ 9) 2, что в десятичных дробях выражается, соответственно, как 3,125 и 3,160.

Позднее, в Древней Греции, первым в череде гениев с необычайной страстью к числу был Архимед — мыслитель, предпочитавший иметь дело с миром реальности, в отличие от Евклида, существовавшего в мире абстракций. Среди многочисленных изобретений Архимеда были гигантская катапульта и система зеркал, с помощью которых он сфокусировал солнечные лучи так, что поджег римские корабли во время осады Сиракуз. А кроме того, он оказался первым, кто предложил метод вычисления числа .

  • Читать дальше
  • 1
  • ...
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: