Вход/Регистрация
Операционная система UNIX
вернуться

Робачевский Андрей Михайлович

Шрифт:

По умолчанию блокирование является рекомендательным (advisory lock). Это означает, что кооперативно работающие процессы могут руководствоваться созданными блокировками, однако ядро не запрещает чтение или запись в заблокированный участок файла. При работе с рекомендательными блокировками процесс должен явно проверять их наличие с помощью тех же функций fcntl(2) и lockf(3C).

Мы уже встречались с использованием системного вызова fnctl(2) для блокирования записей файла в главе 2. Там же была упомянута структура

flock
, служащая для описания блокирования. Поля этой структуры описаны в табл. 4.8.

Таблица 4.8. Поля структуры flock

Поле Описание
short l_type
Тип блокирования:
F_RDLCK
обозначает блокирование для чтения (read lock),
F_WRLCK
— блокирование для записи (write lock),
F_UNLCK
обозначает снятие блокирования.
short l_whence
Точка отсчета смещения записи в файле. Может принимать значения, аналогичные рассмотренным при разговоре о функции lseek(2) в главе 2:
SEEK_SET
,
SEEK_CUR
,
SEEK_END
.
off_t l_start
Смещение блокируемой записи относительно точки отсчета, указанной полем
l_whence
.
off_t l_len
Длина блокируемой записи. Нулевое значение
l_len
указывает, что запись всегда распространяется до конца файла, независимо от возможного изменения его размера.
pid_t l_pid
Идентификатор процесса, установившего блокирование, возвращаемый при вызове команды
GETLK
.

Как следует из описания поля

l_type
структуры
flock
, существуют два типа блокирования записи: для чтения (
F_RDLCK
) и для записи (
F_WRLCK
). Правила блокирования таковы, что может быть установлено несколько блокирований для чтения на конкретный байт файла, при этом в установке блокирования для записи на этот байт будет отказано. Напротив, блокирование для записи на конкретный байт должно быть единственным, при этом в установке блокирования для чтения будет отказано.

Приведем фрагмент программы, использующей возможность блокирования записей:

...

struct flock lock;

...

/* Заполним описание lock с целью блокирования всего файла

для записи */

lock.l_type = FWRLCK;

lock.l_start = 0;

lock.whence = SEEK_SET;

lock.len = 0;

/* Заблокируем файл. Если блокирования, препятствующие

данной операции, уже существуют — ждем их снятия */

fcntl(fd, SETLKW, &lock);

/* Запишем данные в файл - нам никто не помешает */

write(fd, record, sizeof(record));

/* Снимем блокирование */

lock.l_type = F_UNLK;

fcntl(fd, SETLKW, &lock);

В отличие от рекомендательного в UNIX существует обязательное блокирование (mandatory lock), при котором ограничение на доступ к записям файла накладывается самим ядром. Реализация обязательных блокировок может быть различной. Например, в SCO UNIX (SVR3) снятие бита x для группы и установка бита SGID для группы приводит к тому, что блокировки, установленные fcntl(2) или lockf(3C), станут обязательными. UNIX SVR4 поддерживает установку блокирования отдельно для записи и для чтения, обеспечивая тем самым доступ для чтения многим, а для записи — только одному процессу. Эти установки также осуществляются с помощью системного вызова fcntl(2). Следует иметь в виду, что использование обязательного блокирования таит потенциальную опасность. Например, если процесс блокирует доступ к жизненно важному системному файлу и по каким-либо причинам теряет контроль, это может привести к аварийному останову операционной системы.

Буферный кэш

Во введении отмечалось, что работа файловой подсистемы тесно связана с обменом данными с периферийными устройствами. Для обычных файлов и каталогов — это устройство, на котором размещается соответствующая файловая система, для специальных файлов устройств — это принтер, терминал, или сетевой адаптер. Не вдаваясь в подробности подсистемы ввода/вывода, рассмотрим, как во многих версиях UNIX организован обмен данными с дисковыми устройствами — традиционным местом хранения подавляющего большинства файлов [48] .

48

На самом деле файловые системы могут располагаться на удаленных компьютерах (например, в случае NFS). Хотя при работе с такими файловыми системами дисковый ввод/вывод отсутствует, тем не менее и в этом случае кэширование блоков данных значительно повышает производительность.

Не секрет, что операции дискового ввода/вывода являются медленными по сравнению, например, с доступом к оперативной или сверхоперативной памяти. Время чтения данных с диска и копирования тех же данных в памяти может различаться в несколько тысяч раз. Поскольку основные данные хранятся на дисковых накопителях, дисковый ввод/вывод является узким местом операционной системы. Для повышения производительности дискового ввода/вывода и, соответственно, всей системы в целом, в UNIX используется кэширование дисковых блоков в памяти.

Для этого используется выделенная область оперативной памяти, где кэшируются дисковые блоки файлов, к которым наиболее часто осуществляется доступ. Эта область памяти и связанный с ней процедурный интерфейс носят название буферного кэша, и через него проходит большинство операций файлового ввода/вывода. Схема взаимодействия различных подсистем ядра с буферным кэшем приведена на рис. 4.13.

Рис. 4.13. Роль буферного кэша

  • Читать дальше
  • 1
  • ...
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: