Вход/Регистрация
Синергетика. Основы методологии
вернуться

Басин М. А.

Шрифт:

Однако, учитывая наши предыдущие рассуждения, можно утверждать, что точное определение параметра целого системы в подавляющем большинстве случаев невозможно. Любое детерминированное математическое описание, использующее дифференциальные уравнения или итерационные процессы должно сопровождаться дополнительным к нему вероятностным описанием, характеризующим меру и характер распределения отклонения реальной величины параметра целого от его расчётного значения. Существование такой двойственности приводит к необходимости рассмотрения третьей величины, характеризующей структуру и её модель. Этой величиной может являться соотношение мер, определяемое некоторой функцией от параметра целого и меры его вариации. Элементы указанной триады в зависимости от ситуации и способа рассмотрения могут меняться местами.

Глава 3. Фазовое пространство динамической системы

1. Выбор основных координат, характеризующих систему, поведение которой близко к детерминированному, и качественный анализ фазового пространства, описывающего такую систему. Аттракторы системы и возможные бифуркации её фазового пространства

Однако анализа динамики одного, хотя и удачно выбранного, параметра целого чаще всего бывает недостаточно для полного исследования поведения сложной системы, особенно в тех случаях, когда выбранный параметр принимает устойчивое стационарное значение. Система существует и активно функционирует при постоянном значении параметра целого. В этом, случае можно ввести некоторые обобщённые координаты, изменение которых более подробно характеризуют динамику системы. При этом исследуемый объект может быть описан как динамическая система в некотором фазовом пространстве обобщённых координат.

Величина Xi,i=1,…, n, описывает изменение i-й координаты. X, может включать несколько переменных, характеризующих действие этой координаты, а возможно, и целого континуума. Эти координаты собраны в вектор состояния Х(Х1, Х2, …).

Состояние изучаемого объекта в данный момент времени может быть задано точкой в некотором множестве X, в частности в n-мерном многообразии, В этом случае изучаемому объекту соответствует некоторая n-мерная динамическая система, а множество всех точек, соответствующих различным состояниям, называется n-мерным фазовым пространством. Совокупность состояний данной системы в различные моменты времени формирует одномерное пространство (линию), называемую фазовой траекторией системы. Если фазовое пространство системы — n-мерное гладкое многообразие, то фазовая траектория системы гладкая кривая (за исключением некоторых особых точек) и для её описания (а также для описания пучка траекторий, начинающихся из различных точек фазового пространства) может быть использован аппарат системы дифференциальных уравнений dX/dt = f(X,t). Здесь dX/dt — производная вектора X по времени.

Пусть мы имеем какое-либо решение системы дифференциальных уравнений в виде Х(t) = Ф(Х0, t), где Х(t) — значения координат фазовой траектории, проходящей через точку Х0 в момент времени t0. В принципе, эта система уравнений может быть разрешена относительно t: t = Ф– 1 (Х, Х0).

Предположим, что мы знаем состояние динамической системы в момент Tn, соответствующее точке Хn, и хотим определить состояние той же системы Xn+1 в момент Tn+1. Тогда, воспользовавшись предыдущими формулами, получим Xn+1= Ф(Х0, Тn+1) = Ф(Х0,Tn + (T)n) = Ф{X0, [Ф– 1(X0, Хn) + (Tn]}.

Введем понятие оператора F, определяющего изменение системы Х во времени: Хn+1 = F(Xn). Оператор F порождает итерационный процесс и указывает преобразование состояния динамической системы Хn в момент времени Tn в её состояние Хn+1 в момент времени Tn+1.

В принципе, оператор F может быть введён в более общем случае, когда непрерывная зависимость от времени либо отсутствует вовсе, либо не может быть определена.

Основной идеей Г. Хакена, являющейся одной из основополагающих в Синергетике, является идея выделения среди обобщенных координат сложной системы нескольких наименее устойчивых мод, названных им главными модами или параметрами порядка, неустойчивость которых приводит к качественному изменению состояния всей системы, и таких координат, которые сами мало изменяются, однако которых изменяет характер устойчивости состояния основных мод. Они были названы управляющими параметрами.

Теория нелинейных динамических систем в настоящее время интенсивно развивается. Предложены различные формы классификации систем и их математических моделей. Введена терминология, которая активно внедряется в практику теоретических и экспериментальных исследований. Понятия фазового пространства, стационарной точки, цикла, тора, аттрактора, бифуркации, сепаратрисы уже давно вошли в обиход тех, кто использует результаты качественного анализа и расчётов параметров модельных динамических систем для исследования реальных явлений.

2. Выделение странных аттракторов. Количественный и качественный анализ поведения системы, находящейся в области странного аттрактора. Изучение эргодических свойств исследуемой системы

В настоящее время бурно развивается теория «странных» непериодических аттракторов, породившая новую терминологию: каскад бифуркаций, числа Фейгенбаума, фрактальная геометрия, множество Мандельброта, показатели Ляпунова.

Рассматриваются различные сценарии перехода от регулярного движения системы к детерминированному хаосу:

1. через каскад бифуркаций удвоения периода устойчивых циклов Фейгенбаума;

2. через разрушение неустойчивого трёхмерного тора с образованием странного аттрактора по сценарию Рюэля-Такенса;

3. через явление перемежаемости (сценарий Помо-Маннервиля).

Разработаны математические методы и алгоритмы, позволяющие говорить о становлении нового направления науки, которое в настоящее время называется «теорией детерминированного хаоса», и применять их при исследовании тех объектов, которые могут быть описаны с помощью математических моделей динамических систем.

  • Читать дальше
  • 1
  • ...
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: