Шрифт:
где
х1G — концентрация кислорода в уходящих газах, которая может незначительно отличаться от среднеобъемной;
— коэффициент полноты сгорания;
L1 — масса кислорода, необходимая для сгорания единицы массы горючего материала;
n2 = х2G / Х2 >= 1,
где
х2G — концентрация продукта в уходящих газах;
L2 — количество продукта, образующееся в результате сгорания единичной массы вещества;
n3 = х3G/х3 — коэффициент, учитывающий различие концентраций инертного газа в уходящих газах и в помещении.
Начальными условиями для приведенных выше дифференциальных уравнений являются параметры состояния газовой среды (отмеченные индексом «0») в помещении перед пожаром. Они записываются следующим образом:
при = 0
Тm = Тm0
Pm = Рm0
pm = рm0
xt = xt0
Приведенные выше уравнения содержат переменные: Тm; Рm; рm; х1, х2; х3. Число неизвестных равно числу уравнений, следовательно математическое описание пожара в помещении имеет замкнутый характер.
При решении практических задач система уравнений может быть упрощена. Допускается также использование различных эмпирических зависимостей, описывающих теплообмен очага пожара со строительными конструкциями.
Расширить область применения способа моделирования позволяют зональные методы. Исследуемый объем разбивается на зоны, для которых можно использовать интегральные модели. Зоны выбираются таким образом, чтобы в пределах каждой из них газовую среду в очаге пожара можно было достаточно точно описать усредненными параметрами.
В зависимости от характера решаемой задачи для каждой из зон составляют систему уравнений математической модели. В условиях локальных пожаров используется разбиение на зоны горизонтальными плоскостями, при котором разделяются области, занимаемые продуктами горения и воздушной средой.
В условиях развитой стадии пожара и при объемных пожарах объем разбивается на зоны вертикальными плоскостями. Количество зон определяется задачами исследования и размещением пожарной нагрузки в помещении.
Моделирование температурного режима при пожаре в помещении в общем случае включает следующие основные этапы:
анализ конструктивно-планировочных характеристик помещений;
определение вида, количества и размещения пожарной нагрузки;
определение вида возможного пожара; выбор определяющих характеристик пожара; выбор метода расчета и проведение расчета; решение практических задач пожарной профилактики.
В общем случае в результате решения системы дифференциальных уравнений определяются изменения по времени развития пожара: среднеобъемной температуры; средней температуры поверхностей перекрытия, стен и пола;
теплового потока, выделяющегося при горении пожарной нагрузки;
теплового потока, поглощаемого строительными конструкциями;
теплового потока, уходящего из очага пожара с продуктами горения;
теплового потока, уходящего из очага пожара с излучением через проемы.
Эти данные являются исходными для решения практических задач по оценке пожарной опасности.
2.6. Факторы рисков опасных воздействий пожаров
Тепловое излучение может вызывать у человека негативные реакции кратковременного и долгосрочного характера. Физиологическими обратимыми реакциями являются увеличение сердечного ритма, потение, повышение температуры тела.
Патологические эффекты связаны с появлением ожогов вследствие воздействия теплового излучения на кожу. Термическое воздействие на человека связано с прогревом и последующими биохимическими изменениями верхних слоев кожного покрова. Человек ощущает сильную («едва переносимую») боль, когда температура верхнего слоя кожного покрова (~0,1 мм) повышается до 45 °C. Время достижения порога боли (в сек) связанно с интенсивностью теплового воздействия (кВт/м2) зависимостью [106]:
t = (35/g)1’33, (2.50)
Степень повреждения кожи при воздействии более высоких температур зависит от величины и длительности теплового излучения. При относительно слабом тепловом излучении будет повреждаться только верхний слой (эпидермис) на глубину ~1мм. Более интенсивный тепловой поток может привести к поражению не только эпидермиса, но и дермы (нижний слой), а излучение еще большей интенсивности будет воздействовать и на подкожный слой.
Эти три уровня в целом качественно соответствуют установленным категориям ожогов 1-й, II — й и III — й степеней.