Шрифт:
Видоизмененная классификация определения классов устойчивости, представленная в Таблице № 3.4 [90] удобна тем, что всегда имеется синоптическая информация о температуре воздуха на высоте 2 м по синоптическим измерениям, а во-вторых слой в три раза толще, чем в Таблице № 3.2. Значит всегда можно воспользоваться одним или более радиозондовым измерением температуры и скорости атмосферного воздуха. Отметим, что для практического использования можно применять любую из Таблиц 3.1–3.4 в зависимости от наличия информации о атмосфере в районе аварии.
В работе [50] делается вывод о том, что методика Паскуилла позволяет теоретические разработки рассеяния загрязняющих веществ хорошо согласовать с экспериментальными данными. Причем стандартные отклонения горизонтального направления ветра е при временах осреднения от 10 до 60 мин можно эмпирически связать с измеренными значениями ширины струи и относительной средней концентрацией или дозой для случая непрерывных источников.
На основе этих данных было получено соответствие между группами устойчивости Паскуилла и измеренными значениями е. Эти данные приводятся в работе [50].
Запишем их в виде таблицы с учетом полученных нами соотношений для коэффициентов к и , и к (Таблица № 3.5).
Таблица № 3.5.
Из этой таблицы видно, что при одном и том же угле расширения струи и клуба в струю должно вовлекаться в
Анализ Таблицы № 3.5 показывает, что числовые значения коэффициентов вовлечения в зависимости от условий окружающей среды могут варьироваться в широких пределах, изменяя массы вовлекаемого в выброс воздуха более, чем в десять раз. Соответственно этим массам будут существенно меняться геометрические, динамические и концентрационные характеристики его вещества. Это подтверждает вывод о недопустимости рассмотрения коэфициентов вовлечения в виде единой постоянной величины независимо от метеопараметров.
Для использования полученных в работах [50] и [90] результатов для случая расчета высокотемпературной струй при аварийных ситуациях типа пожара необходимо сделать допущение о характере стандартных отклонений ветра. Предполагается, что стандартные отклонения направления ветра в горизонтальной и вертикальной плоскостях примерно равны, т. е.
=
где
= arc tg(dR/ dl).
Физически это означает, что струя имеет практически круглое сечение. Неизотропность поля ветра относительно поперечных осей не нарушает общности рассмотрения и в большинстве практических задач может не учитываться. Этот эффект следует рассматривать для случаев струйных потоков в непосредственной близости от подстилающей поверхности.
Известно, что величины и , представляющие собой осредненные по времени значения флуктуаций угловых направлений ветра в горизонтальной и вертикальной плоскостях, могут быть получены непосредственно с флюгера.
Подводя итоги этого раздела, можно сформулировать методику нахождения коэффициентов вовлечения, необходимых для создания математических моделей и решения практических задач возникновения и движения в атмосфере газообразных выбросов. Она состоит из трех этапов.
На первом этапе в зависимости от наличия конкретной информации о метеорологических параметрах в месте работы определяется группа устойчивости атмосферы по одной из таблиц 3.1–3.4.
На втором этапе по Таблице № 3.5. находят соответствующую группе устойчивости угловую характеристику расширения турбулентного потока и его коэффициент углового расширения к.
Наконец, по формулам (3.14) или (3.19) определяют числовое значение коэффициента вовлечения в струйный поток или к в компактный объем (клуб) в зависимости от характера выброса.
3.4. Геометрические характеристики формирующихся кратковременных выбросов
Формирование кратковременного выброса существенно зависит не только от расходных характеристик
источника загрязнений и атмосферной турбулентности (через коэффициент вовлечения), но и от формы выброса и от площади его поверхности контакта с атмосферным воздухом. Через эту увеличивающуюся поверхность происходит вовлечение окружающей «холодной» среды, которая определяет газодинамические концентрационные и энергетические характеристики вещества выброса. Рассмотрим на примере истечения газа из сопла, как формируются кратковременные выбросы.