Шрифт:
Наблюдения за истечением кратковременных струй из сопел показывают, что форма выброса в зависимости от времени работы ракетного двигателя в первые мгновения меняется от части сферы, ограниченной сегментом вращения, до полусферы. Затем форма выброса может хорошо быть смоделирована как суперпозиция усеченного конуса и полусферы. Увеличение временной координаты для неизменных атмосферных условий приводит лишь к изменению масштаба выброса, остающегося практически самоподобным.
Поскольку истечение из ракетных сопел происходит с большими скоростями, то в первом приближении может быть оправданным подход при котором считается формирование полусферического выброса происходящим за первый шаг интегрирования задачи. Далее выброс представляется суммой полусферы и удлиняющегося усеченного конуса (Рис. 3.4).
Для определения координаты центра масс полусферического выброса х* радиуса R = d0 (Рис. 3.4а) приравняем массы газа в части выброса при х <= х* массе газа в части выброса при х > х*.
Получаем:
В этом выражении:
Рис. 3.4. Схема формирования кратковременного выброса при истечении газа из сопла: а) переходный процесс возникновения выброса в окрестности сопла; б) развитый самоподобный выброс.
1 и 2 — плотности газа в левой (х <= х*) и правой (х > х*) части выброса, соответственно.
Если предположить, что вещество выброса имеет одинаковую плотность в разных его частях, т. е. 1 = 2, то приходим к уравнению относительно искомой координаты центра массы х*. Получаем:
В уравнении (3.21):
Решением уравнения (3.21) является
Необходимо отметить, что координата
При рассмотрении дальнейшей эволюции выброса координата его центра масс будет функцией угла расширения его конической части, т. е. будет зависеть от турбулентности атмосферы. Для ее нахождения обратимся к Рис. 3.46.
Как следует из него в предложении однородности вещества выброса объем усеченной части выброса до координаты х„должен быть равен сумме объемов остальной части выброса.
Важной характеристикой при расчетах продольной координаты центра масс кратковременного выброса х* является хс — координата его центра масс, совпадающая с точкой сопряжения его конической и сферической частей. Важность знания хс объясняется существенной разницей в форме выброса в зависимости от того, больше или меньше значение текущей продольной координаты значения хс. Найдем выражение для хс.
Координаты сопряжения хс конической части выброса со сферической определяется приравнивания объемов этих частей выброса.
Получаем:
где
у1 = кх — уравнение образующей конической поверхности выброса;
Подставив значения у1 и у2 в это соотношение, получаем:
Вещественный корень этого уравнения может быть определен по формуле Кардана [172]:
Окончательное выражение для безразмерной продольной координаты сопряжения конической и сферической частей выброса может быть получено при подстановке в соотношение (3.24) вместо р и q их значений. Из-за громоздкости мы его не приводим.
Если известен радиус полусферической «шапки» выброса R, то выражение для продольной координаты сопряжения может быть записано в виде компактного соотношения. Приравниваем объем цилиндрической части выброса
и его сферической части
Получаем:
Из рассмотрения Рис. 3.4 видно, что по мере развития выброса координата его центра масс перемещается с полусферической его части на цилиндрическую часть. В математическом виде это утверждение может быть записано так:
В этих соотношения, как и ранее: