Шрифт:
Для исследования траекторий, содержащих опасные сближения и соударения астероида Апофис с Землей сразу после возможного тесного сближения в 2036 г., в работе [Соколов и др., 2008] используются следующие методы. В предположении, что движение в промежутке между 2029 и 2036 гг. происходит по резонансной орбите соударения с соизмеримостью средних движений 6:7, методом ТГС строится множество возможных резонансных кеплеровых орбит соударения после тесного сближения в 2036 г. Затем с использованием численного интегрирования уравнений движения с учетом всех возмущений ищутся траектории тесных сближений и соударений с Землей, близкие к построенным кеплеровым резонансным орбитам соударения. Для преодоления основной трудности — потери точности из-за тесных сближений, область допустимых начальных данных можно транспортировать вдоль траекторий в 2035 г., в результате чего ее размеры увеличиваются на несколько порядков. После этого численное нахождение начальных данных, соответствующих опасным траекториям, не представляет принципиальных трудностей. Полученные методом ТГС приближенные значения минимальных геоцентрических расстояний используются при нахождении интересующих нас опасных сближений в качестве первых приближений, начальные данные для численного интегрирования берутся из новой области в 2035 г. Аналогичный подход использовал Ж. Ласкар при исследовании динамического хаоса в Солнечной системе и поиске «уходящих» из нее траекторий Меркурия.
В результате с использованием методов, указанных в работе [Соколов и др., 2008], были построены порождающие эллиптические резонансные траектории соударений в 2037–2052 гг. (95 траекторий). Некоторые из них не могут быть реализованы, так как проходят в 2036 г. на геоцентрическом расстоянии менее радиуса Земли, однако большинство соответствует реальным траекториям. Подробнее были рассмотрены порождающие траектории с соударениями до 2041 г. включительно: численно получены траектории, содержащие соударения Апофиса с Землей в 2040 и 2041 гг. (резонансы 3:4 и 6:5 после 2036 г.), а также тесные сближения в 2037, 2038 и 2039 гг. Численное интегрирование подтвердило корректность использования метода ТГС для построения приближенных решений в случае Апофиса. Для численного интегрирования использовался интегратор Эверхарта. Движение планет и Луны описывалось известными динамическими моделями DE403 и DE405. Минимальные геоцентрические расстояния после 2036 г., полученные по DE403 и DE405, различаются незначительно, разница обычно менее 1 км. Области начальных значений координат в 2035 г., соответствующие указанным соударениям в 2040 и 2041 гг., имеют размеры порядка сотен и десятков метров соответственно. Отметим, что размеры областей начальных данных, соответствующие соударениям, по DE403 и DE405 практически совпадают, в то время как сами эти области отстоят друг от друга на десятки километров.
Представляет также интерес история сближений Земли и Апофиса. Проведенное численное интегрирование от 2006 г. до 1700 г. показало отсутствие тесных сближений на этом интервале. Все сближения происходят 12–14 апреля. Самое тесное сближение имело место в 1819 г. до расстояния 0,84 млн км. Остальные шесть сближений происходили до расстояний 3–4 млн км.
На примере астероида Апофис хорошо видны некоторые важные аспекты проблемы астероидно-кометной опасности, на которые раньше не обращали должного внимания. Так, соударению астероида с планетой могут предшествовать сближения с ней, хотя бы потому, что сближения на умеренные расстояния более вероятны, чем соударения. Этот вопрос обсуждается, в частности, в работе [Елькин, Соколов, 1995]. Отмеченное обстоятельство позволяет заблаговременно обнаружить потенциально опасный объект. С другой стороны, рассеяние возможных траекторий при тесных сближениях ведет к потере точности, затрудняет прогнозирование движения и требует применения специальных методов. Среди возможных движений астероида после тесных сближений появляются опасные траектории, имеющие резонансные возвраты к Земле. Соответствующие «замочные скважины», или зоны резонансного возврата, имеют очень малые размеры и, следовательно, мала вероятность столкновения с Землей. Точное положение «скважин» зависит от величины возмущающих сил: малые недостаточно известные эффекты могут изменить место «скважин» в пространстве начальных данных. Точное определение их положения является сложной актуальной задачей. В то же время само наличие «скважин» и их размеры мало зависят от возмущений. Следует отметить сложную структуру соответствующего множества, аналогичную фрактальной. Небольшое искусственное изменение траектории астероида (удар по нему и т. п.) с целью предотвратить соударение в апреле 2036 г. не гарантирует отсутствия соударений в последующие несколько лет. Отклонив траекторию, можно попасть в близлежащую «замочную скважину», ведущую к соударению. Недостаточная точность знания орбиты Апофиса не позволяет пока исключить возможность попадания в эти зоны резонансного возврата. Поэтому наряду с совершенствованием методов прогнозирования движения астероидов особую ценность имели бы наблюдения АСЗ из космоса, а также использование для уточнения орбиты Апофиса сигналов радиопередатчика, доставленного на орбиту искусственного спутника этого астероида.
7.7.6. Влияние эффекта Ярковского на движение Апофиса. Во всех рассмотренных случаях модель движения Апофиса не включала влияние эффекта Ярковского (см. раздел 3.6). Он вызывается неравномерным нагревом тела солнечными лучами в результате осевого вращения тела и его движения по орбите. Эффект Ярковского зависит от положения оси вращения, орбиты и массы тела, от теплопроводности его поверхностных слоев. Поскольку большинство этих параметров неизвестны, явным образом учесть эффект невозможно. Однако неявным образом этот эффект частично учитывается в результате подгонки элементов орбиты, прежде всего большой полуоси, к наблюдениям, которые, естественно, отражают влияние эффекта, если он достаточно велик. Тем не менее, значительная часть эффекта остается неучтенной, что может вызвать заметные ошибки при прогнозировании движения тела на основе найденной орбиты. В работе [Giorgini et al., 2008] выполнена оценка максимального смещения Апофиса по орбите за период от эпохи оскуляции (2006 г.) до 2029 г. под действием не учитываемой части эффекта. При предполагаемой массе в зависимости от направления вращения и гипотетически заданной теплопроводности поверхностных слоев максимальное смещение вдоль орбиты может составить к 2029 г. от –720 км до +780 км. Эти значения находятся в качественном согласии с оценками влияния эффекта Ярковского на движение ряда АСЗ, найденными Ю. А. Чернетенко иным путем по сравнению с работой [Giorgini et al., 2008].
В работе [Чернетенко, 2007] учет эффекта Ярковского в движении астероидов производился без каких-либо предположений о физических характеристиках этих тел. Предполагалось лишь, что зависимость этого эффекта от гелиоцентрического расстояния r имеет вид 1/r2, а его величина характеризуется в общем случае тремя составляющими ускорения: радиальной, трансверсальной и нормальной, которые определяются из наблюдений (радарных и оптических) совместно с параметрами орбиты. При этом для астероида (6489) Голевка включение в число определяемых по наблюдениям запаздывания параметров трансверсальной составляющей A2 позволило уменьшить ошибку единицы веса с 2,3 мкс до 0,5 мкс. Величина A2 оказалась равной (-2,00 ± 0,14) 10– 14 а.е./сут2.
При оценке влияния эффекта Ярковского на движение астероида Апофис было принято, что зависимость ускорения от гелиоцентрического расстояния имеет вид 1/r2, а для A2 принимались некоторые возможные значения (+2, –2, +6, –6) 10– 14 а.е./сут2. Значения минимального расстояния от Апофиса до Земли и смещения астероида вдоль орбиты на 13 апреля 2029 г., полученные в результате уточнения параметров движения и последующего интегрирования, приведены в табл. 7.6.
Изменения смещения вдоль орбиты при A2 = (+6,-6) 10– 14 а.е./сут2 близки к оценкам, полученным в работе [Giorgini et al., 2008]. Конечно, подобные расчеты имеют только качественный характер, поскольку реальное значение A2 из имеющихся наблюдений найти невозможно. Но метод может быть использован в будущем, если будет получено необходимое число достаточно точных наблюдений.
Оценим теперь, как влияет эффект Ярковского на положение эллипса рассеяния на плоскости цели и на вероятность столкновения Апофиса с Землей в 2036 г. Будем исходить из предположения, что величина A2 для астероида равна -2 10– 14 а.е./сут2, что приводит к сокращению его полуоси и к увеличению среднего движения. В результате к апрелю 2029 г. астероид сместится вдоль орбиты на величину +272 км (табл. 7.6). Таким образом, астероид, соответствующий номинальному решению, найденному с учетом дополнительного ускорения, пересечет плоскость цели несколько раньше, и его минимальное расстояние от Земли составит, как показано в табл. 7.6, 37 964 км по сравнению с расстоянием в 38 220,5 км, на котором астероид должен проследовать мимо Земли в 2029 г. согласно решению, полученному ИПА.