Вход/Регистрация
Новый ум короля: О компьютерах, мышлении и законах физики
вернуться

Пенроуз Роджер

Шрифт:

Как уже говорилось в главе 5, физическое понятие энергии, так же как и импульса, и углового момента, имеютвполне четкие математические определения в терминах положений частиц, их скоростей, масс и действующих на них сил. А можем ли мы сходным образом определить понятие «явного беспорядка», которое, в свою очередь, необходимо для придания точного математического смысла понятию энтропии? Очевидно, что «явное» для одного наблюдателя может не быть таковым для другого. И вообще, не находится ли это «явное» в прямой зависимости от точности, с которой тот или иной наблюдатель способен изучать данную систему? Наблюдатель, располагающий более точной измерительной аппаратурой, способен получить намного больше информации о микроскопическом строении системы, чем другой наблюдатель, использующий менее совершенное оборудование. В этом случае один наблюдатель сможет обнаружить больше «скрытого порядка», чем другой, и он, разумеется, зафиксирует более низкий уровень энтропии данной системы, чем его коллега. Может даже сложиться впечатление, что и личные эстетические вкусы каждого из наблюдателей способны оказать решающее влияние на их выбор между «порядком» или «беспорядком». Предположим, что мы пригласили некоего художника, для которого россыпь осколков стекла на полу окажется настоящим произведением «искусства упорядочивания» по сравнению с безобразным, отвратительным стаканом, банально покоящимся на краю стола! Понизится лии в самом деле энтропия системы после ее оценки наблюдателем с таким тонким артистическим восприятием?

Несмотря на все проблемы, связанные с субъективностью некоторых наших суждений, понятие энтропии оказывается замечательным образом применимо всякий раз, когда речь идет о точном научном описании — каковым и является само понятие энтропии! Причина этого заключается в том, что изменения, вызванные переходами системы от порядка к беспорядку, если их выразить в терминах микроскопических положений и скоростей частиц, поистине колоссальны и (почти во всех случаях) превосходят любые заметные на глаз отличия точек зрения на то, что считать «явным порядком» на макроскопическом уровне, а что — нет. В частности, любое заключение художника или ученого, относительно того, какой из стаканов обладает большим порядком — целый или разбитый, практически не имеет никакого отношения к их реальной энтропии. Намного больший вклад в энтропию дает случайное движение частиц, вызывающее незначительное нагревание стакана и воды, и растекание воды после удара стакана с водою о пол.

Теперь, чтобы точно сформулировать понятие энтропии, вернемся к идее фазового пространства , введенного в главе 5. Напомним, что фазовое пространство системы имеет, как правило, гигантское число измерений, а каждая его точка изображает с максимальной детализацией мгновенную конфигурацию системы. Подчеркнем, что «одна-единственная»точка фазового пространства определяет одновременно положения и импульсы всехотдельных частиц, составляющих рассматриваемую физическую систему. Все, что нам необходимо сейчас для определения энтропии, это сгруппировать вместе все те микроскопические состояния, которые выглядят совершенно одинаковыми с точки зрения их явных(т. е. макроскопических) свойств. Другими словами, нам необходимо разбить наше фазовое пространство на области (рис. 7.3),

Рис. 7.3.Гранулирование фазового пространства на области, соответствующие макроскопически неотличимым состояниям. Энтропия пропорциональна логарифму фазового объема

в каждой из которых различные точки изображают физические системы, отличающиеся на микроскопическом уровне расположением и скоростями частиц, но которые при этом совершенно неразличимы с точки зрения макроскопического наблюдателя, для которого все точки любой такой конкретной области будут описывать одну и ту жефизическую систему. Подобное разбиение фазового пространства на области называется гранулированием фазового пространства.

После такого группирования некоторые из областей могут приобрести подавляюще огромные размеры по сравнению с другими областями. Рассмотрим, к примеру, фазовое пространство газа, заключенного в ящике. Наибольшая область фазового пространства будет приходиться на состояния, в которых частицы газа практически равномерно распределены по ящику с некоторым характерным распределением скоростей, обеспечивающим однородные давление и температуру. Это характерное распределение, в некотором смысле наиболее случайное из всех возможных, называется распределением Максвелла — по имени Джеймса Клерка Максвелла, которого мы уже упоминали ранее. В этом случае про газ говорят, что он находится в состоянии теплового равновесия. Подавляющая часть точек всего фазового пространства соответствует этому тепловому равновесию, и эти точки изображают всевозможные микроскопические значения координат и скоростей отдельных частиц, которые совместимы с состоянием теплового равновесия. Эта огромная часть является, конечно, только одной из многих областей нашего фазового пространства — но она оказывается (существенно) большей всех других областей, занимая практически все фазовое пространство! Рассмотрим теперь другое возможное состояние этого газа, скажем, такое, в котором весь газ собран в одном из углов ящика. В этом случае мы будем опять иметь целое множество различных микроскопических состояний, каждое из которых описывает газ сосредоточенным в углу ящика. Все эти состояния макроскопически неразличимы, и изображающие их точки фазового пространства заполняют в нем свою область. Однако объем этой области оказывается намного меньшим объема области для состояний теплового равновесия — примерно в

раз (если ящик — это метровый куб, содержащий воздух при нормальных условиях, а область в углу — сантиметровый кубик)!

Чтобы оценить различия в фазовых объемах, рассмотрим упрощенную ситуацию, в которой некоторое количество шаров распределено по большому числу ячеек. Предположим, что каждая ячейка может либо быть пустой, либо содержать один шар. Шары будут моделировать молекулы газа, а ячейки — различные положения молекул в ящике. Выделим небольшое подмножество ячеек, которое будем называть особым ; оно будет соответствовать положению молекул газа в углу ящика. Для определенности условимся, что ровно 1 / 10 часть всех ячеек особая — т. е. в случае, когда имеется n особых ячеек, не особых будет ровно 9n (рис. 7.4).

Рис. 7.4.Модель газа в ящике: некоторое количество шаров распределено по значительно большему числу ячеек. Одна десятая часть ячеек отмечены как особые . Эти ячейки выделены в левом верхнем углу

Мы хотим теперь случайным образом распределить m шаров среди всех ячеек и найти вероятность того, что все шары окажутся в особых ячейках. В случае, когда имеется только один шар и десять ячеек (т. е. имеется только одна особая ячейка), эта вероятность, очевидно, равна одной десятой. Тот же результат получится в случае одного шара и любого числа 10n ячеек (т. е. в случае n особых ячеек). Таким образом, для газа, состоящего только из о дногоатома, особая область, соответствующая «газу, собранному в углу ящика», будет иметь фазовый объем, составляющий лишь одну десятуювсего объема «фазового пространства». Однако, если мы увеличим число шаров, вероятность того, что всеони соберутся в особых ячейках, существенно понизится. Скажем, для двухшаров с двадцатью ячейками (две из которых особые) ( m = 2 , n = 2 ) [170] , вероятность равна 1 / 190 ; в случае ста ячеек (среди них — десять особых) ( m = 2 , n = 10 ) вероятность равна 1 / 110 ; а при неограниченном увеличении числа ячеек с сохранением доли особых вероятность будет стремиться к 1 / 100 .

170

В общем случае n , m вероятность равна

Таким образом, в случае газа из двух атомов фазовый объем особой области составляет только одну сотуючасть всего «фазового пространства». Для трехшаров и тридцати ячеек ( m = 3 , n = 3 ), он будет составлять 1 / 4060 всего фазового объема, а в пределе бесконечного числа ячеек — 1 / 1000 — т. е. для газа из трехатомов объем особой части будет составлять одну тысячнуюобъема всего «фазового пространства». Для четырех шаров в пределе бесконечного числа ячеек вероятность становится равной 1 / 10000 . Для пяти шаров — 1 / 100 000 и т. д. Для m шаров в пределе бесконечного числа ячеек вероятность стремится к 1 / 10 m ; т. е. для «газа» из m атомов фазовый объем особой области составляет только 1 / 10 m от всего «фазового объема». (Этот результат остается справедливым, если учесть также и импульсы.)

  • Читать дальше
  • 1
  • ...
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: